Skip to main content
Log in

Effects of Praxelis clematidea invasion on soil nitrogen fractions and transformation rates in a tropical savanna

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Plant invasion has been reported to affect a mass of soil ecological processes and functions, although invasion effects are often context-, species- and ecosystem- specific. This study was conducted to explore potential impacts of Praxelis clematidea invasion on contents of total and available soil nitrogen (N) and microbial N transformations in a tropical savanna. Soil samples were collected from the surface and sub-surface layers in plots with non-, slight, or severe P. clematidea invasion in Hainan Province of southern China, which remains less studied, and analyzed for contents of the total and available N fractions and microbial N transformations. Results showed that total N content significantly increased in the surface soil but trended to decrease in the sub-surface soil in the invaded plots relative to the non-invaded control. Slight invasion significantly increased soil alkali-hydrolysable N content in the two soil layers. Soil net N mineralization rate was not significantly changed in both the soil layers, although soil microbial biomass N was significantly higher in plots with severe invasion than the control. There was no significant difference in content of soil N fractions between plots with slight and severe invasion. Our results suggest that invasion of P. clematidea promotes soil N accumulation in the surface soil layer, which is associated with increased microbial biomass N. However, the invasion-induced ecological impacts did not increase with further invasion. Significantly higher microbial biomass N was maintained in plots with severe invasion, implying that severe P. clematidea invasion may accelerate nutrient cycling in invaded ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bao S (2000) Agro-chemical analyses of soils. China Agruculture Press, Beijing

    Google Scholar 

  • Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511. doi:10.1038/Nature13855

    Article  CAS  Google Scholar 

  • Bradley BA, Early R, Sorte CJB (2015) Space to invade? Comparative range infilling and potential range of invasive and native plants. Glob Ecol Biogeogr 24:348–359

    Article  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Burger M, Jackson LE (2003) Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biol Biochem 35:29–36

    Article  CAS  Google Scholar 

  • Burke MJW, Grime JP (1996) An experimental study of plant community invasibility. Ecology 77:776–790

    Article  Google Scholar 

  • Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443. doi:10.1890/1540-9295(2004)002[0436:Nwisat]2.0.Co;2

    Article  Google Scholar 

  • Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature 427:731–733. doi:10.1038/Nature02322

    Article  CAS  Google Scholar 

  • Carey CJ, Beman JM, Eviner VT, Malmstrom CM, Hart SC (2015) Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands. Front Microbiol 6:466. doi:10.3389/fmicb.2015.00466

    Article  Google Scholar 

  • Christian JM, Wilson SD (1999) Long-term ecosystem impacts of an introduced grass in the northern Great Plains. Ecology 80:2397–2407

    Article  Google Scholar 

  • Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol 19:988–995. doi:10.1111/gcb.12113

    Article  Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139

    Article  CAS  Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523. doi:10.1007/s10021-002-0151-3

    Article  CAS  Google Scholar 

  • Evans RD, Rimer R, Sperry L, Belnap J (2001) Exotic plant invasion alters nitrogen dynamics in an arid grassland. Ecol Appl 11:1301–1310

    Article  Google Scholar 

  • Hooper DU et al (2000) Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. Bioscience 50:1049–1061. doi:10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2

    Article  Google Scholar 

  • Hulme PE, Pysek P, Jarosik V, Pergl J, Schaffner U, Vila M (2013) Bias and error in understanding plant invasion impacts. Trends Ecol Evol 28:212–218. doi:10.1016/j.tree.2012.10.010

    Article  Google Scholar 

  • Jandova K, Klinerova T, Mullerova J, Pysek P, Pergl J, Cajthaml T, Dostal P (2014) Long-term impact of Heracleum mantegazzianum invasion on soil chemical and biological characteristics. Soil Biol Biochem 68:270–278. doi:10.1016/j.soilbio.2013.10.014

    Article  CAS  Google Scholar 

  • Knops JMH, Bradley KL, Wedin DA (2002) Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecol Lett 5:454–466. doi:10.1046/j.1461-0248.2002.00332.x

    Article  Google Scholar 

  • Kuebbing SE, Classen AT, Simberloff D (2014) Two co-occurring invasive woody shrubs alter soil properties and promote subdominant invasive species. J Appl Ecol 51:124–133. doi:10.1111/1365-2664.12161

    Article  Google Scholar 

  • Liao C et al (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714. doi:10.1111/j.1469-8137.2007.02290.x

    Article  CAS  Google Scholar 

  • Luo YQ, Hui DF, Zhang DQ (2006) Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87:53–63. doi:10.1890/04-1724

    Article  Google Scholar 

  • MacKown CT, Jones TA, Johnson DA, Monaco TA, Redinbaugh MG (2009) Nitrogen uptake by perennial and invasive annual grass seedlings: nitrogen form effects. Soil Sci Soc Am J 73:1864. doi:10.2136/sssaj2008.0334

    Article  CAS  Google Scholar 

  • Marris E (2009) The end of the invasion? Nature 459:327–328

    Article  CAS  Google Scholar 

  • Martina JP, Hamilton SK, Turetsky MR, Phillippo CJ (2014) Organic matter stocks increase with degree of invasion in temperate inland wetlands. Plant Soil 385:107–123. doi:10.1007/s11104-014-2211-9

    Article  CAS  Google Scholar 

  • Masunga RH, Uzokwe VN, Mlay PD, Odeh I, Singh A, Buchan D, De Neve S (2016) Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Appl Soil Ecol 101:185–193. doi:10.1016/j.apsoil.2016.01.006

    Article  Google Scholar 

  • McDougall KL, Morgan JW, Walsh NG, Williams RJ (2005) Plant invasions in treeless vegetation of the Australian alps perspectives in plant ecology. Evolution and Systematics 7:159–171. doi:10.1016/j.ppees.2005.09.001

    Google Scholar 

  • Ogle SM, Ojima D, Reiners WA (2004) Modeling the impact of exotic annual brome grasses on soil organic carbon storage in a northern mixed-grass prairie. Biol Invasions 6:365–377. doi:10.1023/B:Binv.0000034629.68660.28

    Article  Google Scholar 

  • Richardson DM, Pyšek P (2006) Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog Phys Geogr 30:409–431

    Article  Google Scholar 

  • Roberts TL, Norman RJ, Slaton NA, Wilson CE (2009) Changes in alkaline Hydrolyzable nitrogen distribution with soil depth: fertilizer correlation and calibration implications. Soil Sci Soc Am J 73:2151–2158. doi:10.2136/sssaj2009.0089

    Article  CAS  Google Scholar 

  • Sardans J, Peñuelas J (2012) The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. Plant Physiol 160:1741–1761. doi:10.1104/pp.112.208785

    Article  CAS  Google Scholar 

  • Seastedt TR, Pyšek P (2011) Mechanisms of plant invasions of north American and European grasslands. Annu Rev Ecol Evol S 42:133–153. doi:10.1146/annurev-ecolsys-102710-145057

    Article  Google Scholar 

  • Skurski TC, Rew LJ, Maxwell BD (2014) Mechanisms underlying nonindigenous plant impacts: a review of recent experimental research. Invasive Plant Science and Management 7:432–444. doi:10.1614/Ipsm-D-13-00099.1

    Article  Google Scholar 

  • Souza-Alonso P, Novoa A, Gonzalez L (2014) Soil biochemical alterations and microbial community responses under Acacia dealbata link invasion. Soil Biol Biochem 79:100–108. doi:10.1016/j.soilbio.2014.09.008

    Article  CAS  Google Scholar 

  • Stanford G, Smith SJ (1972) Nitrogen mineralization potentials of soils. Soil Sci Soc Am J 36:465–472. doi:10.2136/sssaj1972.03615995003600030029x

    Article  CAS  Google Scholar 

  • Sun Y, Muller-Scharer H, Schaffner U (2014) Plant neighbours rather than soil biota determine impact of an alien plant invader. Funct Ecol 28:1545–1555. doi:10.1111/1365-2435.12295

    Article  Google Scholar 

  • te Beest M, Stevens N, Olff H, van der Putten WH (2009) Plant-soil feedback induces shifts in biomass allocation in the invasive plant Chromolaena odorata. J Ecol 97:1281–1290. doi:10.1111/j.1365-2745.2009.01574.x

    Article  Google Scholar 

  • te Beest M, Esler KJ, Richardson DM (2015) Linking functional traits to impacts of invasive plant species: a case study. Plant Ecol 216:293–305. doi:10.1007/s11258-014-0437-5

    Article  Google Scholar 

  • Turner MG, Smithwick EA, Metzger KL, Tinker DB, Romme WH (2007) Inorganic nitrogen availability after severe stand-replacing fire in the greater Yellowstone ecosystem. Proc Natl Acad Sci U S A 104:4782–4789. doi:10.1073/pnas.0700180104

    Article  CAS  Google Scholar 

  • USDA (2014) Weed risk assessment for Praxelis clematidea R. M. King & H. Rob. (Asteraceae) - Praxelis

  • van der Putten WH, Klironomos JN, Wardle DA (2007) Microbial ecology of biological invasions. ISME J 1:28–37. doi:10.1038/Ismej.2007.9

    Article  Google Scholar 

  • van der Putten WH et al (2013) Plant-soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276. doi:10.1111/1365-2745.12054

    Article  Google Scholar 

  • Wang QZ, Huang M, Downie SR, Chen ZX, Chen YT (2015) Genetic diversity and structure of the noxious alien grass Praxelis clematidea in southern China. Biochem Syst Ecol 59:183–189

    Article  CAS  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  Google Scholar 

  • Waterhouse BM (2003) Know your enemy: recent records of potentially serious weeds in northern Australia. Papua New Guinea and Papua (Indonesia) Telopea 10:477–485

    Google Scholar 

  • Weber E, Sun SG, Li B (2008) Invasive alien plants in China: diversity and ecological insights. Biol Invasions 10:1411–1429

    Article  Google Scholar 

  • Weidenhamer JD, Callaway RM (2010) Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. J Chem Ecol 36:59–69. doi:10.1007/s10886-009-9735-0

    Article  CAS  Google Scholar 

  • Wolkovich EM, Lipson DA, Virginia RA, Cottingham KL, Bolger DT (2010) Grass invasion causes rapid increases in ecosystem carbon and nitrogen storage in a semiarid shrubland. Glob Chang Biol 16:1351–1365. doi:10.1111/j.1365-2486.2009.02001.x

    Article  Google Scholar 

  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  • Xiao HF, Feng YL, Schaefer DA, Yang XD (2014) Soil fungi rather than bacteria were modified by invasive plants, and that benefited invasive plant growth. Plant Soil 378:253–264. doi:10.1007/s11104-014-2040-x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Anonymous reviewers are appreciated to help us improve our manuscript, with good suggestion on the data process and discussion. This research was funded by the Doctoral Fund of Ministry of Education of China (No. 20124404110009), Foundation for High-level Talents in Higher Education of Guangdong, China ([2013] No. 246), Science and Technology Program of Guangdong Province, China (No. 2015B090903077 and 2015A020215021), and the National Natural Science Foundation of China (No. 31500401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaen Zhang.

Additional information

Responsible Editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Xu, J., Quan, G. et al. Effects of Praxelis clematidea invasion on soil nitrogen fractions and transformation rates in a tropical savanna. Environ Sci Pollut Res 24, 3654–3663 (2017). https://doi.org/10.1007/s11356-016-8127-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8127-6

Keywords

Navigation