Skip to main content

Advertisement

Log in

Investigation on the reaction of phenolic pollutions to mono-rhamnolipid micelles using MEUF

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Micellar-enhanced ultrafiltration (MEUF) processes of resorcinol, phenol, and 1-Naphthol with rhamnolipid as an anionic biosurfactant were investigated using polysulfone membrane. The effects of retentate/permeate concentration of phenolic pollutants (C R/C P), distribution coefficient of phenolic pollutions (D), concentration ratios of phenolic pollutions (α P) and rhamnolipids (α R) and adsorption capacity of the membrane (N m) were studied by operating pressure, pH condition, feed surfactant, and phenolic pollution concentrations. Results showed that C R (with pH) increased and ranked in the following order: resorcinol > phenol > 1-Naphthol, which is same with C R (with pressure), C R (with surfactant), C R/C P (with pollution), α,P and D, while C P (with pH), C P (with pressure), and C P (with surfactant) ranked in the reverse order. The operating pressure increased the solubility of phenolic from 0 to 0.1 MPa and then decreased slowly above 0.1 MPa. The concentration ratio of rhamnolipid was nearly at 2.0 and that of phenolic pollution was slightly above 1.0. D of phenolic pollutants reached the maximum at phenolic pollution concentration of 0.1 mM and the feed rhamnolipid concentration at 1 CMC. Moreover, zeta potential in feed stream and retentate stream and membrane adsorption of phenolic pollutions were firstly investigated in this article; the magnitudes of zeta potential with the feed stream of three phenolic pollutions were nearly the same and slightly lower than those with the retentate stream. The adsorption capacity of the membrane (N m) was calculated and compared to the former research, which showed that rhamnolipid significantly decreases the membrane adsorption of phenolic pollutions at a relatively lower concentration. It was implied that rhamnolipid can be substituted for chemical surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbasi-Garravand E, Mulligan CN (2014) Using micellar enhanced ultrafiltration and reduction techniques for removal of Cr(VI) and Cr(III) from water. Sep Purif Technol 132:505–512. doi:10.1016/j.seppur.2014.06.010

    Article  CAS  Google Scholar 

  • Ahmad AL, Puasa SW, Zulkali MMD (2006) Micellar-enhanced ultrafiltration for removal of reactive dyes from an aqueous solution. Desalination 191:153–161. doi:10.1016/j.desal.2005.07.022

    Article  CAS  Google Scholar 

  • Alargova R, Ivanova V, Kralchevsky P, Mehreteab A, Broze G (1998) Growth of rod-like micelles in anionic surfactant solutions in the presence of Ca 2+ counterions. Colloids Surf A Physicochem Eng Asp 142:201–218

    Article  CAS  Google Scholar 

  • Banat F, Al-Bashir B, Al-Asheh S, Hayajneh O (2000) Adsorption of phenol by bentonite. Environ Pollut 107:391–398

    Article  CAS  Google Scholar 

  • Bayramoglu G, Gursel I, Tunali Y, Arica MY (2009) Biosorption of phenol and 2-chlorophenol by Funaliatrogii pellets. Bioresour Technol 100:2685–2691

    Article  CAS  Google Scholar 

  • Budavari S (1996) An encyclopedia of chemicals, drugs and biologicals. The Merck index; 12 th Edn. Merck & Co Inc, Whitehouse Station, NJ, p. 146

    Google Scholar 

  • Champion JT, Gilkey JC, Lamparski H, Retterer J, Miller RM (1995) Electron microscopy of rhamnolipid (biosurfactant) morphology: effects of pH, cadmium, and octadecane. J Colloid Interface Sci 170:569–574. doi:10.1006/jcis.1995.1136

    Article  CAS  Google Scholar 

  • Comninellis C, Nerini A (1995) Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. J Appl Electrochem 25:23–28

    Article  CAS  Google Scholar 

  • Comninellis C, Pulgarin C (1991) Anodic oxidation of phenol for waste water treatment. J Appl Electrochem 21:703–708

    Article  CAS  Google Scholar 

  • Der Yang R, Humphrey AE (1975) Dynamic and steady state studies of phenol biodegradation in pure and mixed cultures. Biotechnol Bioeng 17:1211–1235

    Article  Google Scholar 

  • Dharaiya N, Bahadur P (2012) Phenol induced growth in Triton X-100 micelles: effect of pH and phenols’ hydrophobicity. Colloids Surf A Physicochem Eng Asp 410:81–90. doi:10.1016/j.colsurfa.2012.06.021

    Article  CAS  Google Scholar 

  • El-Naas MH, Al-Muhtaseb SA, Makhlouf S (2009) Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. J Hazard Mater 164:720–725

    Article  CAS  Google Scholar 

  • Gurol MD, Vatistas R (1987) Oxidation of phenolic compounds by ozone and ozone+ UV radiation: a comparative study. Water Res 21:895–900

    Article  CAS  Google Scholar 

  • Gzara L, Dhahbi M (2001) Removal of chromate anions by micellar-enhanced ultrafiltration using cationic surfactants. Desalination 137:241–250

    Article  CAS  Google Scholar 

  • Han D-H, Cha S-Y, Yang H-Y (2004) Improvement of oxidative decomposition of aqueous phenol by microwave irradiation in UV/H 2 O 2 process and kinetic study. Water Res 38:2782–2790

    Article  CAS  Google Scholar 

  • Huang C, Dong C, Tang Z (1993) Advanced chemical oxidation: its present role and potential future in hazardous waste treatment. Waste Manag 13:361–377

    Article  CAS  Google Scholar 

  • Huang J, Zeng G, Xu K, Fang Y (2005) Removal of cadmium ions from aqueous solution via micellar-enhanced ultrafiltration. Trans Nonferrous Metals Soc China 15:184–189

    CAS  Google Scholar 

  • Huang J-H et al (2010) Micellar-enhanced ultrafiltration of methylene blue from dye wastewater via a polysulfone hollow fiber membrane. J Membr Sci 365:138–144. doi:10.1016/j.memsci.2010.08.052

    Article  CAS  Google Scholar 

  • Huang J-H et al (2012) Separation of phenol from various micellar solutions using MEUF. Sep Purif Technol 98:1–6. doi:10.1016/j.seppur.2012.06.037

    Article  CAS  Google Scholar 

  • Huang J-H et al. (2015) Micellar-enhanced ultrafiltration for the solubilization of various phenolic compounds with different surfactants

  • Ishigami Y, Gama Y, Nagahora H, Yamaguchi M, Nakahara H, Kamata T (1987) The pH-sensitive conversion of molecular aggregates of rhamnolipid biosurfactant. Chem Lett 16:763–766

    Article  Google Scholar 

  • Jordan W, van Barneveld H, Gerlich O, Kleine-Boymann M, Ullrich J (1991) Phenol Ullmann’s encyclopedia of industrial chemistry

  • Juang R-S, Xu Y-Y, Chen C-L (2003) Separation and removal of metal ions from dilute solutions using micellar-enhanced ultrafiltration. J Membr Sci 218:257–267

    Article  CAS  Google Scholar 

  • Kamble S, Marathe K (2005) Membrane characteristics and fouling study in MEUF for the removal of chromate anions from aqueous streams. Sep Sci Technol 40:3051–3070

    Article  CAS  Google Scholar 

  • Liu Z-F, Zeng G-M, Wang J, Zhong H, Ding Y, Yuan X-Z (2010) Effects of monorhamnolipid and Tween 80 on the degradation of phenol by Candida tropicalis. Process Biochem 45:805–809. doi:10.1016/j.procbio.2010.01.014

    Article  CAS  Google Scholar 

  • Liu Z-F et al (2012a) Effect of dirhamnolipid on the removal of phenol catalyzed by laccase in aqueous solution. World J Microbiol Biotechnol 28:175–181

    Article  Google Scholar 

  • Liu Z et al (2012b) Influence of rhamnolipids and Triton X-100 on adsorption of phenol by Penicillium simplicissimum. Bioresour Technol 110:468–473. doi:10.1016/j.biortech.2012.01.092

    Article  CAS  Google Scholar 

  • Lu S, Somasundaran P (2007) Intermolecular packing of sugar-based surfactant and phenol in a micellar phase. Langmuir 23:9960–9966

    Article  CAS  Google Scholar 

  • Materna K, Goralska E, Sobczynska A, Szymanowski J (2004) Recovery of various phenols and phenylamines by micellar enhanced ultrafiltration and cloud point separation. Green Chem 6:176–182

    Article  CAS  Google Scholar 

  • Mathialagan T, Viraraghavan T (2009) Biosorption of pentachlorophenol from aqueous solutions by a fungal biomass. Bioresour Technol 100:549–558

    Article  CAS  Google Scholar 

  • Monteiro ÁA, Boaventura RA, Rodrigues AE (2000) Phenol biodegradation by Pseudomonas putida DSM 548 in a batch reactor. Biochem Eng J 6:45–49

    Article  CAS  Google Scholar 

  • Monticone V, Mannebach M, Treiner C (1994) Coadsorption of 2-naphthol and cetylpyridinium chloride at a silica/water interface in relation with the micellar solubilization effect. Langmuir 10:2395–2398

    Article  CAS  Google Scholar 

  • Oppenländer T, Gliese S (2000) Mineralization of organic micropollutants (homologous alcohols and phenols) in water by vacuum-UV-oxidation (H 2 O-VUV) with an incoherent xenon-excimer lamp at 172 nm. Chemosphere 40:15–21

    Article  Google Scholar 

  • Özkaya B (2006) Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. J Hazard Mater 129:158–163

    Article  Google Scholar 

  • Purkait MK, DasGupta S, De S (2004) Removal of dye from wastewater using micellar-enhanced ultrafiltration and recovery of surfactant. Sep Purif Technol 37:81–92. doi:10.1016/j.seppur.2003.08.005

    Article  CAS  Google Scholar 

  • Sanchez M, Aranda FJ, Espuny MJ, Marques A, Teruel JA, Manresa A, Ortiz A (2007) Aggregation behaviour of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa in aqueous media. J Colloid Interface Sci 307:246–253. doi:10.1016/j.jcis.2006.11.041

    Article  CAS  Google Scholar 

  • Shin KH, Kim KW, Kim JY, Lee KE, Han SS (2008) Rhamnolipid morphology and phenanthrene solubility at different pH values. J Environ Qual 37:509–514. doi:10.2134/jeq2007.0258

    Article  CAS  Google Scholar 

  • Vibhandik AD, Marathe KV (2014) Removal of Ni (II) ions from wastewater by micellar enhanced ultrafiltration using mixed surfactants. Front Chem Sci Eng 8:79–86

    Article  CAS  Google Scholar 

  • Xiong Y (2013) Effect of various surfactant micelle on separation efficiency of phenol in micellar-enhanced ultrafiltration [D]. Hunan University

  • Xu K (2008) Performance, mechanism and application research on solibilization and retention of aqueous phenol by using micellar-enhanced ultrafiltration [D]. Hunan University

  • Yang C, Qian Y, Zhang L, Feng J (2006) Solvent extraction process development and on-site trial-plant for phenol removal from industrial coal-gasification wastewater. Chem Eng J 117:179–185

    Article  CAS  Google Scholar 

  • Yu M et al (2015) Characteristics of mannosylerythritol lipids and their environmental potential. Carbohydr Res 407:63–72. doi:10.1016/j.carres.2014.12.012

    Article  CAS  Google Scholar 

  • Yuan X-z et al (2012) Effect of rhamnolipids on cadmium adsorption by Penicillium simplicissimum. J Cent South Univ 19:1073–1080

    Article  CAS  Google Scholar 

  • Yurlova L, Kryvoruchko A, Kornilovich B (2002) Removal of Ni (II) ions from wastewater by micellar-enhanced ultrafiltration. Desalination 144:255–260

    Article  CAS  Google Scholar 

  • Zeng G-M, Xu K, Huang J-H, Li X, Fang Y-Y, Qu Y-H (2008) Micellar enhanced ultrafiltration of phenol in synthetic wastewater using polysulfone spiral membrane. J Membr Sci 310:149–160. doi:10.1016/j.memsci.2007.10.046

    Article  CAS  Google Scholar 

  • Zeng G et al (2011a) Effect of monorhamnolipid on the degradation of n-hexadecane by Candida tropicalis and the association with cell surface properties. Appl Microbiol Biotechnol 90:1155–1161

    Article  CAS  Google Scholar 

  • Zeng GM et al (2011b) Micellar-enhanced ultrafiltration of cadmium and methylene blue in synthetic wastewater using SDS. J Hazard Mater 185:1304–1310. doi:10.1016/j.jhazmat.2010.10.046

    Article  CAS  Google Scholar 

  • Zeng G, Chen M, Zeng Z (2013) Risks of neonicotinoid pesticides. Science 340:1403

    Article  CAS  Google Scholar 

  • Zhang Y et al (2012) Effect of Triton X-100 on the removal of aqueous phenol by laccase analyzed with a combined approach of experiments and molecular docking. Colloids Surf B: Biointerfaces 97:7–12

    Article  CAS  Google Scholar 

  • Zhong H (2008) Adsorption of rhamnolipid biosurfactant on microorgaisms and the effect of adsorption on cell surface hydrophobicity [D]. Hunan University

  • Zhong H et al (2015) Effect of low-concentration rhamnolipid on adsorption of Pseudomonas aeruginosa ATCC 9027 on hydrophilic and hydrophobic surfaces. J Hazard Mater 285:383–388. doi:10.1016/j.jhazmat.2014.11.050

    Article  CAS  Google Scholar 

  • Zhou M-F, Yuan X-Z, Zhong H, Liu Z-F, Li H, Jiang L-L, Zeng G-M (2011) Effect of biosurfactants on laccase production and phenol biodegradation in solid-state fermentation. Appl Biochem Biotechnol 164:103–114

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the Program for Changjiang Scholars and Innovative Research Team in University (IRT-13R17) and the National Natural Science Foundation of China (51308200, 51378192, 51521006, and 51378190). Thanks to Xiazhen Wang and Fenglan Liu for the aid of polishing the language.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhifeng Liu or Guangming Zeng.

Additional information

Responsible Editor: Bingcai Pan

Highlights

Mono-rhamnolipid is successfully used for phenolic pollution solubilization.

Mono-rhamnolipid significantly decreases membrane adsorption.

Hydrophobicity of phenolic pollutions affects parameters in MEUF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Yu, M., Zeng, G. et al. Investigation on the reaction of phenolic pollutions to mono-rhamnolipid micelles using MEUF. Environ Sci Pollut Res 24, 1230–1240 (2017). https://doi.org/10.1007/s11356-016-7851-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7851-2

Keywords

Navigation