Skip to main content

Advertisement

Log in

Arsenic, cadmium, lead and mercury levels in blood of Finnish adults and their relation to diet, lifestyle habits and sociodemographic variables

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The Northern Finland Birth Cohort program (NFBC) is the epidemiological and longitudinal prospective general population research program, which was established to promote health and wellbeing of the population in northern Finland. The aim of present study, as a part of the NFBC program, was to analyze the blood levels of arsenic (B-As), cadmium (B-Cd), lead (B-Pb), total mercury (B-Hg) and selenium (B-Se); to compare these levels with threshold limits; to study sociodemographic factors; and to correlate these levels with calcium and haemoglobin. The study was comprised of 249 NFBC subjects, of which 123 were female and 126 were male (ages 31.1 ± 0.3 and 31.1 ± 0.4, respectively). All participants were asked to complete a questionnaire regarding diet and living habits. The geometric means (± SD) of B-As were 0.49 ± 2.80 μg/l and 0.44 ± 2.72 μg/l; B-Cd were 0.18 ± 4.02 μg/l and 0.12 ± 3.21 μg/l; B-Pb were 17.0 ± 1.8 μg/l and 9.06 ± 2.20 μg/l; B-Hg were 2.18 ± 2.02 μg/l and 1.85 ± 1.78 μg/l; and B-Se were 106.0 ± 1.3 and 94.3 ± 1.3 μg/l in males and females, respectively. Among the subjects in the present analysis, 23 % of males and 17.1 % of females had B-As levels above the ATSDR normal human levels of B-As in unexposed individuals (1.0 μg/l). The B-Pb geometric mean (12.44 μg/l) was approximately one eighth the CDC toxicological cut-off point of 100 μg/l. Twenty-one individuals (8.4 %) exceeded a B-Hg level of 5.8 μg/l. Fifty-eight females (47 %) had a B-Hg higher than 2.0 μg/l, the German Federal Environmental Agency cut-off point for women (18–69 years) who consume fish at least three times/month; therefore, their babies could be at risk of adverse effects during development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akesson A, Julin B, Wolk A (2008) Long-term dietary cadmium intake and postmenopausal endometrial cancer incidence: a population-based prospective cohort study. Cancer Res 68:6435–6441

    Article  CAS  Google Scholar 

  • Al-Saleh I, Shinwari N, Mashhour A, Mohamed GED, Rabah A (2011) Heavy metals (lead, cadmium and mercury) in maternal, cord blood and placenta of healthy women. Int J Hyg Environ Health 214:79–101

    Article  CAS  Google Scholar 

  • AMAP (1998) In: Hansen JC, Gilman A, Klopov V, Odland JO (eds) AMAP assessment report: Arctic pollution issues, chapter 12: pollution and human health. Arctic Monitoring and Assessment Programme, Oslo, pp. 775–844

    Google Scholar 

  • Angerer J, Ewers U, Wilhelm M (2007) Human biomonitoring: state of the art. Int J Hyg Environ Health 210:201–228

    Article  CAS  Google Scholar 

  • ATSDR (2007a) ATSDR agency for toxic substances and disease registry. Toxicological profile for arsenic. U.S. Department of Health and Human Services, Public Health Services, Atlanta

    Google Scholar 

  • ATSDR (2007b) Toxicological profile for lead. Agency for Toxic Substances and Disease Registry, Atlanta http://www.atsdr.cdc.gov/toxprofiles/tp13.pdf, Accessed June 2015

    Google Scholar 

  • Barany E, Bergdahl IA, Schutz A, Skerfving S, Oskarsson A (1997) Inductively coupled plasma mass spectrometry for direct multi-element analysis of diluted human blood and serum. J Anal At Spectrom 12:1005–1009. doi:10.1039/A700904F

    Article  CAS  Google Scholar 

  • Beijer K, Jernelov A (1987) Ecological aspects of mercury–selenium interactions in the marine environment. Environ Health Perspect 25:43–45

    Google Scholar 

  • Benramdane L, Accominotti M, Fanton L, Malicier D, Vallon J (1999) Arsenic speciation in human organs following fatal arsenic trioxide poisoning—a case report. Clin Chem 45:301–306

    CAS  Google Scholar 

  • Berlin M, Zalups R, Fowler B (2007) Mercury. Chapter 33. In: Nordberg G, Fowler B, Nordberg M, Friberg L (eds) Handbook of toxicology of metals. Elsevier Publishers, Amsterdam

    Google Scholar 

  • Bernard SM, McGeehin MA (2003) Prevalence of blood lead levels =5 μg/dL among US children 1 to 5 Years of age and socioeconomic and demographic factors associated with blood of lead levels 5 to 10 μg/dL, third National Health and nutrition examination survey, 1988-1994. Pediatrics 112:1308–1313

    Article  Google Scholar 

  • Biswas S, Talukder G, Sharma A (1999) Prevention of cytotoxic effects of arsenic by short-term dietary supplementation with selenium in mice in vivo. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 441:155–160

    Article  CAS  Google Scholar 

  • Bjermo H, Sand S, Nälsén C, Lundh T, Enghardt Barbieri H, Pearson M, Lindroos AK, Jönsson BAG, Barregård L, Darnerud PO (2013) Lead, mercury, and cadmium in blood and their relation to diet among Swedish adults. Food Chem Toxicol 57:161–169

    Article  CAS  Google Scholar 

  • Bjornberg K, Vahter M, Petersson-Grawe K, Glynn A, Cnattingius S, Darnerud P, Atuma S, Aune M, Becker W, Berglund M (2003) Methyl mercury and inorganic mercury in Swedish pregnant women and in cord blood: influence of fish consumption. Environ Health Perspect 111:637–641

    Article  CAS  Google Scholar 

  • Bleecker ML, Ford DP, Vaughan CG, Walsh KS, Lindgren KN (2007) The association of lead exposure and motor performance mediated by cerebral white matter change. Neurotoxicology 28:318–323. doi:10.1016/j.neuro.2006.04.008

    Article  CAS  Google Scholar 

  • Blot WJ (1997) Vitamin/mineral supplementation and cancer risk: international chemoprevention trials. Proc Soc Exp Biol Med 216:291–296

    Article  CAS  Google Scholar 

  • Bose-O’Reilly S, McCarty KM, Steckling N, Lettmeier B (2010) Mercury exposure and children’s health. Curr Probl Pediatr Adolesc Health Care 40:186–215. doi:10.1016/j.cppeds.2010.07.002

    Article  Google Scholar 

  • Calafat AM, Ye X, Silva MJ, Kuklenyik Z, Needham LL, Kolossa M, Tuomisto J, Astrup Jensen A (2006) Human exposure assessment to environmental chemicals using biomonitoring. Int J Androl 29:166–171

    Article  CAS  Google Scholar 

  • Calderon J, Navarro ME, Jimenez-Capdeville ME, Santos-Diaz MA, Golden A, Rodriguez-Leyva I, Borja-Aburto V, Díaz-Barriga F (2001) Exposure to arsenic and lead and neuropsychological development in Mexican children. Environ Res 85:69–76

    Article  CAS  Google Scholar 

  • Calderón J, Navarro ME, Jimenez-Capdeville ME, Santos-Diaz MA, Golden A, Rodriguez-Leyva I, Borja-Aburto V, Díaz-Barriga F (2001) Exposure to arsenic and lead and neuropsychological development in Mexican children. Environ Res 85:69–76

    Article  CAS  Google Scholar 

  • Canfield RL, Henderson CR Jr, Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP (2003) Intellectual impairment in children with blood lead concentrations below 10 μg per deciliter. N Engl J Med 348:1517–1526

    Article  CAS  Google Scholar 

  • CDC (2013) Adult blood lead epidemiology and surveillance (ABLES). US Department of Health and Human Services, CDC, National Institute for Occupational Safety and Health, Cincinnati Available at http://www.cdc.gov/niosh/topics/ables/description.html

    Google Scholar 

  • CDC (2015) Blood mercury levels in young children and childbearing-aged women—United States, 1999—2002. (https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5343a5.htm) Accessed Sept 2016

  • Chaney RL, Ryan JA, Li YM, Angel JS (2001) Transfer of cadmium through plants to the food chain. In: Syers JK, Goldfeld M (eds) Environmental cadmium in the food chain: source, pathways and risks, proceeding of the SCOPE workshop. Scientific Committee on Problems of the Environment/International Council of Scientific Unions (SCOPE/ICSU). Brussels, Belgium, Sep. 13–16, 2000. SCOPE, Paris, pp. 76–81

    Google Scholar 

  • Chen C, Yu H, Zhao J, Li B, Qu L, Liu S, Zhang P, Chai Z (2006) The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environ Health Perspect 114:297–301

    Article  CAS  Google Scholar 

  • Chen A, Kim SS, Chung E, Dietrich KN (2013) Thyroid hormones in relation to lead, mercury, and cadmium exposure in the national health and nutrition examination survey, 2007-2008. Environ Health Perspect 121:181–186

    Article  CAS  Google Scholar 

  • Choi AL, Budtz-Jørgensen E, Jørgensen PJ, Steuerwald U, Debes F, Weihe P, Grandjean P (2008) Selenium as a potential protective factor against mercury developmental neurotoxicity. Environ Res 107:45–52

    Article  CAS  Google Scholar 

  • Clark NA, Teschke K, Rideout K, Copes R (2007) Trace element levels in adults from the west coast of Canada and associations with age, gender, diet, activities, and levels of other trace elements. Chemosphere 70:155–164

    Article  CAS  Google Scholar 

  • Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662

    Article  CAS  Google Scholar 

  • Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury—current exposures and clinical manifestations. N Engl J Med 349:1731–1737

    Article  CAS  Google Scholar 

  • Clifton JC II (2007) Mercury exposure and public health. Pediatr Clin N Am 54:237.e1–237.e45

    Article  Google Scholar 

  • Cui Y, Zhu Y, Zhai R, Huang Y, Qiu Y, Liang J (2005) Exposure to metal mixtures and human health impacts in a contaminated area in Nanning. China Environ Int 31:784–790

    Article  CAS  Google Scholar 

  • Culvin-Aralar LA, Furness RW (1991) Mercury and selenium interaction: a review. Ecotoxicol Environ Saf 21:348–364

    Article  Google Scholar 

  • Das D, Chatterjee A, Mandal BK, Samanta G, Chakraborti D, Chanda B (1995) Arsenic in ground water in six districts of West Bengal, India: the biggest arsenic calamity in the world: part 2.* arsenic concentration in drinking water, hair, nails, urine, skin-scale and liver tissue (biopsy) of the affected people. Analyst 120:917–924

    Article  CAS  Google Scholar 

  • Díez S (2009) Human health effects of methylmercury exposure. Rev Environ Contam Toxicol 198:111–132

    Google Scholar 

  • Donaldson SG, Van Oostdam J, Tikhonov C, Feeley M, Armstrong B, Ayotte P, Boucher O, Bowers W, Chan L, Dallaire F, Dallaire R, Dewailly É, Edwards J, Egeland GM, Fontaine J, Furgal C, Leech T, Loring E, Muckle G, Nancarrow T, Pereg D, Plusquellec P, Potyrala M, Receveur O, Shearer RG (2010) Environmental contaminants and human health in the Canadian Arctic. Sci Total Environ 408:5165–5234

    Article  CAS  Google Scholar 

  • Ewers U, Krause C, Schulz C, Wilhelm M (1999) Reference values and human biological monitoring values for environmental toxins. Report on the work and recommendations of the commission on human biological monitoring of the German Federal Environmental Agency. Int Arch Occup Environ Health 72:255–260

    Article  CAS  Google Scholar 

  • Fowler BA, Chou SHS, Jones RL, Chen CJ (2007) Arsenic. In: Nordberg G, Fowler B, Nordberg M, Friberg L (eds) Handbook of toxicology of metals, 3rd edn. Elsevier Publishers, Amsterdam

    Google Scholar 

  • Garçon G, Leleu B, Zerimech F, Marez T, Haguenoer J, Furon D, Shirali P (2004) Biologic markers of oxidative stress and nephrotoxicity as studied in biomonitoring of adverse effects of occupational exposure to lead and cadmium. J Occup Environ Med 46:1180–1186

    Article  CAS  Google Scholar 

  • Garçon G, Leleu B, Marez T, Zerimech F, Haguenoer J, Furon D, Shirali P (2007) Biomonitoring of the adverse effects induced by the chronic exposure to lead and cadmium on kidney function: usefulness of alpha-glutathione S-transferase. Sci Total Environ 377:165–172

    Article  CAS  Google Scholar 

  • Goldman LR, Shannon MW (2001) Technical report: mercury in the environment: implications for pediatricians. Pediatrics 108:197–205

    Article  CAS  Google Scholar 

  • Grandjean P, Weihe P, White RF, Debes F (1998) Cognitive performance of children prenatally exposed to ‘safe’ levels of methylmercury. Environ Res 77:165–172

    Article  CAS  Google Scholar 

  • Harding B (1983) What is the status of arsenic as a human carcinogen. In: Lederer WHE, Fensterheim RJ (eds) Arsenic: Industrial, biomedical, environmental perspectives. Van Nostrand Reinhold, New York, Toronto, London, Melbourne, p 203–209

  • Hays SM, Nordberg M, Yager JW, Aylward LL (2008) Biomonitoring Equivalents (BE) dossier for cadmium (Cd) (CAS No. 7440-43-9). Regul Toxicol Pharmacol 51:S49–S56

    Article  CAS  Google Scholar 

  • Health Canada (2010) Report on Human Biomonitoring of Environmental Chemicals in Canada Results of the Canadian Health. Measures Survey Cycle 1 (2007–2009). http://www.hc-sc.gc.ca/ewh-semt/pubs/contaminants/chms-ecms/index-eng.php

  • Health Canada (2013) Results of the Canadian health measures survey cycle 2 (2009–2011) April 2013. Second report on human biomonitoring of environmental chemicals in Canada. http://www.healthyenvironmentforkids.ca/sites/healthyenvironmentforkids.ca/files/HumanBiomonitoringReport__EN.pdf

  • Health Canada (2015) Third report on human biomonitoring of environmental chemicals in Canada. (http://www.hc-sc.gc.ca/ewh-semt/pubs/contaminants/chms-ecms-cycle3/index-eng.php) Accessed Sept 2016

  • Heitland P, Köster HD (2006) Biomonitoring of 37 trace elements in blood samples from inhabitants of northern Germany by ICP-MS. J Trace Elem Med Biol 20:253–262

    Article  CAS  Google Scholar 

  • Hercberg S, Preziosi P, Briançon S, Galan P, Triol I, Malvy D, Roussel A, Favier A (1998) A primary prevention trial using nutritional doses of antioxidant vitamins and minerals in cardiovascular diseases and cancers in a general population: the SU.VI.MAX study—design, methods, and participant characteristics. Control Clin Trials 19:336–351

    Article  CAS  Google Scholar 

  • Hinwood AL, Sim MR, Jolley D, De Klerk N, Bastone EB, Gerostamoulos J, Drummer OH (2003) Risk factors for increased urinary inorganic arsenic concentrations from low arsenic concentrations in drinking water. Int J Environ Health Res 13:271–284

    Article  CAS  Google Scholar 

  • Horvat M, Bloom NS, Liang L (1993a) Comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in low level environmental samples: part 1. Sediments. Anal Chim Acta 281:135–152

    Article  CAS  Google Scholar 

  • Horvat M, Liang L, Bloom NS (1993b) Comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in low level environmental samples. Anal Chim Acta 282:153–168

    Article  CAS  Google Scholar 

  • Hsu C, Liu P, Chien L, Chou S, Han B (2007) Mercury concentration and fish consumption in Taiwanese pregnant women. BJOG: An International Journal of Obstetrics and Gynaecology 114:81–85

    Article  CAS  Google Scholar 

  • Hung DQ, Nekrassova O, Compton RG (2004) Analytical methods for inorganic arsenic in water: a review. Talanta 64:269–277

    Article  CAS  Google Scholar 

  • Hutchinson J (1988) Diseases, etc., of the skin: I. On some examples of arsenic-keratosis of the skin and of arsenic-cancer. Trans Pathol Soc London 39:352–363

    Google Scholar 

  • IARC (2002) Some drinking water disinfectants and contaminants, including arsenic. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Lyon

    Google Scholar 

  • Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Article  CAS  Google Scholar 

  • Kantomaa MT, Tammelin TH, Demakakos P, Ebeling HE, Taanila AM (2010) Physical activity, emotional and behavioural problems, maternal education and self-reported educational performance of adolescents. Health Educ Res 25:368–379. doi:10.1093/her/cyp048

    Article  CAS  Google Scholar 

  • Karagas MR, Choi AL, Oken E, Horvat M, Schoeny R, Kamai E, Cowell W, Grandjean P, Korrick S (2012) Evidance on the human health effects of low-level methylmercury exposure. Environ Health Perspect 120:799–806

    Article  CAS  Google Scholar 

  • Kim Y, Lee B (2012) Associations of blood lead, cadmium, and mercury with estimated glomerular filtration rate in the Korean general population: analysis of 2008-2010 Korean National Health and Nutrition Examination Survey data. Environ Res 118:124–129

    Article  CAS  Google Scholar 

  • Kuno R, Roquetti MH, Becker K, Seiwert M, Gouveia N (2013) Reference values for lead, cadmium and mercury in the blood of adults from the metropolitan area of Sao Paulo, Brazil. Int J Hyg Environ Health 216:243–249

    Article  CAS  Google Scholar 

  • Laitinen J, Kiukaanniemi K, Heikkinen J, Koiranen M, Nieminen P, Sovio U, Keinänen-Kiukaanniemi S, Järvelin MR (2005) Body size from birth to adulthood and bone mineral content and density at 31 years of age: results from the northern Finland 1966 birth cohort study. Osteoporos Int 16:1417–1424

    Article  CAS  Google Scholar 

  • Lanphear BP, Hornung R, Khoury J, Yolton K, Baghurst P, Bellinger DC, Canfield RL, Dietrich KN, Bornschein R, Greene T, Rothenberg SJ, Needleman HL, Schnaas L, Wasserman G, Graziano J, Roberts R (2005) Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ Health Perspect 113:894–899

    Article  CAS  Google Scholar 

  • Liang L, Horvat M, Bloom NS (1994) An improved speciation method for mercury by GC/CVAFS after aqueous phase ethylation and room temperature precollection. Talanta 41:371–379

    Article  CAS  Google Scholar 

  • Lyons GH, Genc Y, Stangoulis JCR, Palmer LT, Graham RD (2005) Selenium distribution in wheat grain, and the effect of postharvest processing on wheat selenium content. Biol Trace Elem Res 103:155–168

    Article  CAS  Google Scholar 

  • Mahaffey KR (2005) Mercury exposure: medical and public health issues. Trans Am Clin Climatol Assoc 116(2005):127–153 Discussion 153–154. - Transactions of the American Clinical and Climatological Association 127

    Google Scholar 

  • Mahaffey KR, Clickner RP, Bodurow CC (2004) Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey, 1999 and 2000. Environ Health Perspect 112:562–570

    Article  CAS  Google Scholar 

  • Menai M, Heude B, Slama R, Forhan A, Sahuquillo J, Charles M, Yazbeck C (2012) Association between maternal blood cadmium during pregnancy and birth weight and the risk of fetal growth restriction: the EDEN mother–child cohort study. Reprod Toxicol 34:622–627

    Article  CAS  Google Scholar 

  • Menke A, Muntner P, Silbergeld E, Platz E, Guallar E (2009) Cadmium levels in urine and mortality among U.S. adults. Environ Health Perspect 117:190–196

    Article  CAS  Google Scholar 

  • Minoia C, Ronchi A, Gaggeri R, Guzzi G, Severi G (2007) Correlating blood mercury and dental amalgams. Sci Total Environ 381:331

    Article  CAS  Google Scholar 

  • Mozaffarian D, Rimm EB (2006) Fish intake, contaminants, and human health evaluating the risks and the benefits. J Am Med Assoc 296:1885–1899

    Article  CAS  Google Scholar 

  • Nampoothiri LP, Gupta S (2008) Biochemical effects of gestational coexposure to lead and cadmium on reproductive performance, placenta, and ovary. J Biochem Mol Toxicol 22:337–344. doi:10.1002/jbt.20246

    Article  CAS  Google Scholar 

  • National Institute of Environmental Research (2006) A study of exposure and health effect of mercury. NIER No. 2006–44-826

  • Navarro-Alarcon M, Cabrera-Vique C (2008) Selenium in food and the human body: a review. Sci Total Environ 400:115–141

    Article  CAS  Google Scholar 

  • NFA (2012) Market basket 2010—chemical analysis, exposure estimation and health-related assessment of nutrients and toxic compounds in Swedish food baskets. The National Food Agency, Uppsala www.livsmedelsverket.se (English version); reports/risk assessments-risk benefits/report no. 7-2012

    Google Scholar 

  • NIH Office of Dietary Supplements (2015) Dietary Supplement Fact Sheet: Selenium, NIH Office of Dietary Supplements. Dietary Supplement Fact Sheet: Selenium, 〈http://ods.od.nih.gov/factsheets/selenium.asp〉. Accessed Aug 2015

  • Nordberg GF, Nogawa K, Nordberg M, Friberg L (2007) Cadmium. In: Nordberg G, Fowler B, Nordberg M, Friberg L (eds) Handbook of toxicology of metals, 3rd edn. Elsevier Publishers, Amsterdam

    Google Scholar 

  • NRC (National Research Council) (2000) Toxicological effects of methylmercury

  • NTP (2000) Arsenic and certain arsenic compounds. In: Reports on carcinogens, first and subsequent 2nd–9th (1980–2000). National Toxicology Program, Research Triangle Park, pp. 17–19

    Google Scholar 

  • Oken E, Wright R, Kleinman K, Bellinger D, Amarasiriwardena C, Hu H, Rich-Edwards J, Gillman M (2005) Maternal fish consumption, hair mercury, and infant cognition in a U.S. cohort. Am J Epidemiol 467:1171–1181

    Google Scholar 

  • Palkovicova L, Ursinyova M, Masanova V, Yu Z, Hertz-Picciotto I (2008) Maternal amalgam dental fillings as the source of mercury exposure in developing fetus and newborn. Journal of Exposure Science and Environmental Epidemiology 18:326–331

    Article  CAS  Google Scholar 

  • Paulsson K, Lundbergh K (1989) Trace metals in lakes. The selenium method for treatment of lakes for elevated levels of mercury in fish. Sci Total Environ 87:495–507

    Article  Google Scholar 

  • Pellizzari E, Clayton CA (2006) Assessing the measurement precision of various arsenic forms and arsenic exposure in the National Human Exposure Assessment Survey (NHEXAS). Environ Health Perspect 114:220–227

    Article  CAS  Google Scholar 

  • Pillai A, Gupta S (2005) Effect of gestational and lactational exposure to lead and/or cadmium on reproductive performance and hepatic oestradiol metabolising enzymes. Toxicol Lett 155:179–186

    Article  CAS  Google Scholar 

  • Pillai P, Patel R, Pandya C, Gupta S (2009) Sex-specific effects of gestational and lactational coexposure to lead and cadmium on hepatic phase I and phase II xenobiotic/steroid-metabolizing enzymes and antioxidant status. J Biochem Mol Toxicol 23:419–431. doi:10.1002/jbt.20305

    Article  CAS  Google Scholar 

  • Rastogi S, Nandlike K, Fenster W (2007) Elevated blood lead levels in pregnant women: identification of a high-risk population and interventions. J Perinat Med 35:492–496

    Article  CAS  Google Scholar 

  • Raymond LJ, Ralston N (2004) Mercury: selenium interactions and health implications. SMDJ Seychelles Medical and Dental Journal 7:72–78

    Google Scholar 

  • Reeves PG (2001) Mineral nutrient status and the bioavailability of cadmium from natural food sources. In: Syers JK, Goldfeld M (eds) Environmental cadmium in the food chain: source, pathways and risks, proceeding of the SCOPE workshop. Scientific committee on problems of the environment/International Council of Scientific Unions (SCOPE/ICSU). Brussels, Belgium, Sep. 13–16, 2000. SCOPE, Paris, pp. 82–86

    Google Scholar 

  • Reeves PG, Chaney RL (2001) Mineral status of female rats affects the absorption and organ distribution of dietary cadmium derived from edible sunflower kernels (Helianthus annuus L.). Environ Res 85:215–225

    Article  CAS  Google Scholar 

  • Rocha-Amador D, Navarro ME, Carrizales L, Morales R, Calderón J (2007) Decreased intelligence in children and exposure to fluoride and arsenic in drinking water. Cadernos de Saude Publica 23:S579–S587

    Article  Google Scholar 

  • Rodriguez VM, Carrizales L, Mendoza MS, Fajardo OR, Giordano M (2002) Effects of sodium arsenite exposure on development and behavior in the rat. Neurotoxicol Teratol 24:743–750

    Article  CAS  Google Scholar 

  • Saint-Amour D, Roy M, Bastien C, Ayotte P, Dewailly E, Després C, Gingras S, Muckle G (2006) Alterations of visual evoked potentials in preschool Inuit children exposed to methylmercury and polychlorinated biphenyls from a marine diet. Neurotoxicology 27:567–578

    Article  CAS  Google Scholar 

  • Samanta G, Sharma R, Roychowdhury T, Chakraborti D (2004) Arsenic and other elements in hair, nails, and skin-scales of arsenic victims in West Bengal, India. Sci Total Environ 326:33–47

    Article  CAS  Google Scholar 

  • Satarug S, Garrett S, Sens M, Sens D (2010) Cadmium, environmental exposure, and health outcomes. Environ Health Perspect 118:182–190

    Article  CAS  Google Scholar 

  • Schulz C, Angerer J, Ewers U, Kolossa-Gehring M (2007) The German human biomonitoring commission. Int J Hyg Environ Health 210:373–382

    Article  CAS  Google Scholar 

  • Skerfving S, Bergdahl I (2007) Lead. Chapter 31. In: Nordberg G, Fowler B, Nordberg M, Friberg L (eds) Handbook of toxicology of metals, 3rd edn. Elsevier Publishers, Amsterdam

    Google Scholar 

  • Smolders E (2001) Cadmium uptake by plants. Int J Occup Med Environ Health 14:177–183

    CAS  Google Scholar 

  • Smrkolj P, Pograjc L, Hlastan-Ribic C, Stibilj V (2005) Selenium content in selected Slovenian foodstuffs and estimated daily intakes of selenium. Food Chem 90:691–697

    Article  CAS  Google Scholar 

  • Son J, Lee J, Paek D, Lee J (2009) Blood levels of lead, cadmium, and mercury in the Korean population: results from the Second Korean National Human Exposure and Bio-monitoring Examination. Environ Res 109:738–744

    Article  CAS  Google Scholar 

  • Styblo M, Thomas DJ (2001) Selenium modifies the metabolism and toxicity of arsenic in primary rat hepatocytes. Toxicol Appl Pharmacol 172:52–61

    Article  CAS  Google Scholar 

  • Suk WA, Olden K, Yang RSH (2002) Chemical mixtures research: significance and future perspectives. Environ Health Perspect 110:891–892

    Article  CAS  Google Scholar 

  • Tapiero H, Townsend D, Tew K (2003) The antioxidant role of selenium and seleno-compounds. Biomed Pharmacother 57:134–144

    Article  CAS  Google Scholar 

  • Taylor A, Branch S, Halls D, Patriarca M, White M (2004) Atomic spectrometry update. Clinical and biological materials, foods and beverages. J Anal At Spectrom 19:505–556. doi:10.1039/B401305K

    Article  CAS  Google Scholar 

  • Taylor KW, Novak RF, Anderson HA, Birnbaum LS, Blystone C, Devito M, Jacobs D, Köhrle J, Lee DH, Rylander L, Rignell-Hydbom A, Tornero-Velez R, Turyk ME, Boyles A, Thayer KA, Lind L (2013) Evaluation of the association between persistent organic pollutants (POPs) and diabetes in epidemiological studies: a national toxicology program workshop review. Environ Health Perspect 121(7):774–783

  • Thomas VM, Socolow RH, Fanelli JJ, Spiro TG (1999) Effects of reducing lead in gasoline: an analysis of the international experience. Environ Sci Technol 33:3942–3948. doi:10.1021/es990231+

    Article  CAS  Google Scholar 

  • Tsuchiya A, Hinners TA, Burbacher TM, Faustman EM, Mariën K (2008) Mercury exposure from fish consumption within the Japanese and Korean communities. Journal of Toxicology and Environmental Health - Part A: Current Issues 71:1019–1031

    Article  CAS  Google Scholar 

  • Unuvar E, Ahmadov H, Kiziler AR, Aydemir B, Toprak S, Ulker V, Ark C (2007) Mercury levels in cord blood and meconium of healthy newborns and venous blood of their mothers: clinical, prospective cohort study. Sci Total Environ 374:60–70

    Article  CAS  Google Scholar 

  • US EPA (2002) (United States Environmental Protection Agency) Economic analysis of including mercury containing devices in the Universal Waste System, Notice of Proposed Rulemaking Office of Solid Waste and Emergency Response, Washington (2002) Available at: Http://www.Epa.gov/wastes/hazard/recycling/electron/econ-Hg.Pdf. Accessed 25 May 2015

  • Varo P, Alfthan G, Huttunen J, Aro A (1994) Nationwide selenium supplementation in Finland—effect on diet, blood and tissue levels, and health. In: Burk RF (ed) Selenium in biology and medicine. Springer, Berlin Anonymous, pp. 198–218

    Google Scholar 

  • Walton F, Waters S, Jolley S, LeCluyse E, Thomas D, Styblo M (2003) Selenium compounds modulate the activity of recombinant rat AsIII-methyltransferase and the methylation of arsenite by rat and human hepatocytes. Chem Res Toxicol 16:261–265. doi:10.1021/tx025649r

    Article  CAS  Google Scholar 

  • Wang G, Fowler BA (2008) Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic. Toxicol Appl Pharmacol 233:92–99

    Article  CAS  Google Scholar 

  • Wasowicz W, Gromadzinska J, Szram K, Rydzynski K, Cieslak J, Pietrzak Z (2001) Selenium, zinc, and copper concentrations in the blood and milk of lactating women. Biol Trace Elem Res 79:221–233

    Article  CAS  Google Scholar 

  • Wasowicz W, Gromadzinska J, Rydzynski K, Tomczak J (2003) Selenium status of low-selenium area residents: polish experience. Toxicol Lett 137:95–101

    Article  CAS  Google Scholar 

  • WHO (1992) World Health Organization cadmium (environmental health criteria 134). WHO, Geneva

    Google Scholar 

  • Wilhelm M, Ewers U, Schulz C (2004) Revised and new reference values for some trace elements in blood and urine for human biomonitoring in environmental medicine. Int J Hyg Environ Health 207:69–73

    Article  CAS  Google Scholar 

  • Wilhelm M, Heinzow B, Angerer J, Schulz C (2010) Reassessment of critical lead effects by the German Human Biomonitoring Commission results in suspension of the human biomonitoring values (HBM I and HBM II) for lead in blood of children and adults. Int J Hyg Environ Health 213:265–269

    Article  CAS  Google Scholar 

  • Wright RO, Amarasiriwardena C, Woolf AD, Jim R, Bellinger DC (2006) Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicology 27:210–216

    Article  CAS  Google Scholar 

  • Yoneda S, Suzuki KT (1997) Detoxification of mercury by selenium by binding of equimolar Hg-Se complex to a specific plasma protein. Toxicol Appl Pharmacol 143:274–280

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007–2013—Environment (including Climate Change) FP7-ENV-2008-1—under Grant Agreement No: 226534-ArcRisk. The financial support of the Slovenian research agency ARRS through a programme P1-0143 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Abass.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abass, K., Koiranen, M., Mazej, D. et al. Arsenic, cadmium, lead and mercury levels in blood of Finnish adults and their relation to diet, lifestyle habits and sociodemographic variables. Environ Sci Pollut Res 24, 1347–1362 (2017). https://doi.org/10.1007/s11356-016-7824-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7824-5

Keywords

Navigation