Skip to main content

Advertisement

Log in

Chiral polychlorinated biphenyls: absorption, metabolism and excretion—a review

  • PCBs: Exposures, Effects, Remediation and Regulation with special reference to PCBs in Schools
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Seventy eight out of the 209 possible polychlorinated biphenyl (PCB) congeners are chiral, 19 of which exist under ambient conditions as stable rotational isomers that are non-superimposable mirror images of each other. These congeners (C-PCBs) represent up to 6 % by weight of technical PCB mixtures and undergo considerable atropisomeric enrichment in wildlife, laboratory animals, and humans. The objective of this review is to summarize our current knowledge of the processes involved in the absorption, metabolism, and excretion of C-PCBs and their metabolites in laboratory animals and humans. C-PCBs are absorbed and excreted by passive diffusion, a process that, like other physicochemical processes, is inherently not atropselective. In mammals, metabolism by cytochrome P450 (P450) enzymes represents a major route of elimination for many C-PCBs. In vitro studies demonstrate that C-PCBs with a 2,3,6-trichlorosubstitution pattern in one phenyl ring are readily oxidized to hydroxylated PCB metabolites (HO-PCBs) by P450 enzymes, such as rat CYP2B1, human CYP2B6, and dog CYP2B11. The oxidation of C-PCBs is atropselective, thus resulting in a species- and congener-dependent atropisomeric enrichment of C-PCBs and their metabolites. This atropisomeric enrichment of C-PCBs and their metabolites likely plays a poorly understood role in the atropselective toxicity of C-PCBs and, therefore, warrants further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amaro AR, Oakley GG, Bauer U, Spielmann HP, Robertson LW (1996) Metabolic activation of PCBs to quinones: reactivity toward nitrogen and sulfur nucleophiles and influence of superoxide dismutase. Chem Res Toxicol 9:623–629

    Article  CAS  Google Scholar 

  • Anezaki K, Nakano T (2014) Concentration levels and congener profiles of polychlorinated biphenyls, pentachlorobenzene, and hexachlorobenzene in commercial pigments. Environ Sci Pollut Res 21:998–1009

    Article  CAS  Google Scholar 

  • Arctic Monitoring and Assessment Programme (2003) PCB in the Russian Federation: inventory and proposals for priority remedial actions. Executive summary of the report of phase 1: evaluation of the current status of the problem with respect to environmental impact and development of proposals for priority remedial actions of the multilateral cooperative project on phase-out of PCB use, and management of PCB-contaminated wastes in the Russian Federation. http://www.amap.no/documents/doc/pcb-in-the-russian-federation-inventory-and-proposals-for-priority-remedial-actions/797. Accessed 14 Oct 2014

  • Bakke JE, Bergman AL, Larsen GL (1982) Metabolism of 2,4′,5-trichlorobiphenyl by the mercapturic acid pathway. Science 217:645–647

    Article  CAS  Google Scholar 

  • Bergkvist C, Kippler M, Larsson SC, Berglund M, Glynn A, Wolk A, Aakesson A (2014) Dietary exposure to polychlorinated biphenyls is associated with increased risk of stroke in women. J Intern Med 276:248–259

    Article  CAS  Google Scholar 

  • Birnbaum LS (1983) Distribution and excretion of 2,3,6,2′,3′,6′- and 2,4,5,2′,4′,5′-hexachlorobiphenyl in senescent rats. Toxicol Appl Pharmacol 3:262–272

    Article  Google Scholar 

  • Boonyathumanondh R, Watanabe S, Laovakul W, Tabucanon M (1995) Development of a quantification methodology for polychlorinated biphenyls by using Kanechlor products as the secondary reference standard. Fresenius J Anal Chem 352:261–267

    Article  CAS  Google Scholar 

  • Bordajandi LR, Abad E, Gonzales MJ (2008) Occurrence of PCBs, PCDD/Fs, PBDEs and DDTs in Spanish breast milk: enantiomeric fraction of chiral PCBs. Chemosphere 70:567–575

    Article  CAS  Google Scholar 

  • Busbee DL, Yoo J-SH, Norman JO, Joe CO (1985) Polychlorinated biphenyl uptake and transport by lymph and plasma components. Proc Soc Exp Biol Med 179:116–122

    Article  CAS  Google Scholar 

  • Carpenter DO (2006) Polychlorinated biphenyls (PCBs): routes of exposure and effects on human health. Rev Environ Health 21:1–23

    Article  CAS  Google Scholar 

  • Chan-Hon-Tong A, Charles M-A, Forhan A, Heude B, Sirot V (2013) Exposure to food contaminants during pregnancy. Sci Total Environ 458–460:27–35

    Article  CAS  Google Scholar 

  • Chu S, Covaci A, Schepens P (2003) Levels and chiral signatures of persistent organochlorine pollutants in human tissues from Belgium. Environ Res 93:167–176

    Article  CAS  Google Scholar 

  • Crane AL, Klein K, Zanger UM, Olson JR (2012) Effect of CYP2B6*6 and CYP2C19*2 genotype on chlorpyrifos metabolism. Toxicology 293:115–122

    Article  CAS  Google Scholar 

  • Currado GM, Harrad S (1998) A comparison of polychlorinated biphenyl concentrations in indoor and outdoor air and the potential significance of inhalation as a human exposure pathway. Environ Sci Technol 32:3043–3047

    Article  CAS  Google Scholar 

  • Currado GM, Harrad S (2000) Factors influencing atmospheric concentrations of polychlorinated biphenyls in Birmingham, U.K. Environ Sci Technol 34:78–82

    Article  CAS  Google Scholar 

  • de Voogt P, Brinkman U (1989) Production, properties and usage of polychlorinated biphenyls. In: Kimborough RD, Jensen A (eds) Halogenated biphenyls, terphenyls, naphthalenes, dibenzodioxins and related products. Elsevier Science Publishers, Amsterdam, pp 3–43

    Chapter  Google Scholar 

  • Ding X, Kaminsky LS (2003) Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol 43:149–173

    Article  CAS  Google Scholar 

  • Driss MR, Sabbah S, Bouguerra ML (1989) High-resolution gas chromatography of PCBs [polychlorobiphenyls]. Analysis of commercial mixtures of Phenochlor. Analusis 17:252–258

    CAS  Google Scholar 

  • Drouillard KG, Norstrom RJ (2000) Dietary absorption efficiencies and toxicokinetics of polychlorinated biphenyls in ring doves following exposure to Aroclor mixtures. Environ Toxicol Chem 19:2707–2714

    Article  CAS  Google Scholar 

  • Drouillard KGN, Norstrom RJ (2003) The influence of diet properties and feeding rates on PCB toxicokinetics in the ring dove. Arch Environ Contam Toxicol 44:97–106

    Article  CAS  Google Scholar 

  • Dulfer WJ, Govers HAJ (1995) Solubility and micelle-water partitioning of polychlorinated biphenyls in solutions of bile salt micelles. Chemosphere 30:293–306

    Article  CAS  Google Scholar 

  • Dulfer WJ, Groten JP, Govers HA (1996) Effect of fatty acids and the aqueous diffusion barrier on the uptake and transport of polychlorinated biphenyls in Caco-2 cells. J Lipid Res 37:950–961

    CAS  Google Scholar 

  • Dulfer WJ, Govers HAJ, Groten JP (1998) Kinetics and conductivity parameters of uptake and transport of polychlorinated biphenyls in the Caco-2 intestinal cell line model. Environ Toxicol Chem 17:493–501

    Article  CAS  Google Scholar 

  • Ellerichmann T, Bergman A, Franke S, Hühnerfuss H, Jakobsson E, König WA, Larsson C (1998) Gas chromatographic enantiomer separations of chiral PCB methyl sulfons and identification of selectively retained enantiomers in human liver. Fresenius Environ Bull 7:244–257

    CAS  Google Scholar 

  • Falandysz J, Taniyasu S, Flisak M, Swietojanska A, Horii Y, Honari N, Yamashita N (2004) Composition of chlorobiphenyl congeners in the Chlorofen formulation. Rocz Panstw Zakl Hig 55:313–324

    CAS  Google Scholar 

  • Fiedler H (1997) Polychlorinated biphenyls (PCB): uses and environmental releases, Proceedings of the subregional awareness raising workshop on persistent organic pollutants (POPs). St. Petersburg, Russian Federation

  • Forgue ST, Allen JR (1982) Identification of an arene oxide metabolite of 2,2′,5-5′-tetrachlorobiphenyl by gas chromatography-mass spectroscopy. Chem Biol Interact 40:233–245

    Article  CAS  Google Scholar 

  • Forgue ST, Preston BD, Hargraves WA, Reich IL, Allen JR (1979) Direct evidence that an arene oxide is a metabolic intermediate of 2,2′,5,5′-tetrachlorobiphenyl. Biochem Biophys Res Commun 91:475–483

    Article  CAS  Google Scholar 

  • Frame GM (1997) A collaborative study of 209 PCB congeners and 6 Aroclors on 20 different HRGC columns. 2. Semi-quantitative Aroclor congener distributions. Fresenius J. Anal Chem 357:714–722

    Article  CAS  Google Scholar 

  • Garner CE, Demeter J, Matthews HB (2006) The effect of chlorine substitution on the disposition of polychlorinated biphenyls following dermal administration. Toxicol Appl Pharmacol 216:157–167

    Article  CAS  Google Scholar 

  • Glausch A, Hahn J, Schurig V (1995) Enantioselective determination of chiral 2,2′,3,3′,4,6′- hexachlorobiphenyl (PCB 132) in human milk samples by multidimensional gas chromatography/electron capture detection and by mass spectrometry. Chemosphere 30:2079–2085

    Article  CAS  Google Scholar 

  • Gobas FAPC, Muir DCG, Mackay D (1988) Dynamics of dietary bioaccumulation and fecal elimination of hydrophobic organic chemicals in fish. Chemosphere 17:943–962

    Article  CAS  Google Scholar 

  • Guroff G, Daly JW, Jerina DM, Renson J, Witkop B, Udenfriend S (1967) Hydroxylation-induced migration: the NIH shift. Recent experiments reveal an unexpected and general result of enzymatic hydroxylation of aromatic compounds. Science 157:1524–1530

    Article  CAS  Google Scholar 

  • Haglund P (1996a) Enantioselective separation of polychlorinated biphenyl atropisomers using chiral high performance liquid chromatography. J Chromatogr 724:219–228

    Article  CAS  Google Scholar 

  • Haglund P (1996b) Isolation and characterization of polychlorinated biphenyl (PCB) atropisomers. Chemosphere 32:2133–2140

    Article  CAS  Google Scholar 

  • Haglund P, Wiberg K (1996) Determination of the gas chromatographic elution sequences of the (+) and (-) enantiomers of stable enantiomeric PCBs on Chirasil-Dex. J High Resolut Chromatogr 19:373–376

    Article  CAS  Google Scholar 

  • Haraguchi K, Kato Y, Koga N, Degawa M (2004) Metabolism of polychlorinated biphenyls by Gunn rats: identification and serum retention of catechol metabolites. Chem Res Toxicol 17:1684–1691

    Article  CAS  Google Scholar 

  • Haraguchi K, Kato Y, Koga N, Degawa M (2005a) Species differences in the tissue distribution of catechol and methylsulphonyl metabolites of 2,4,5,2′,5′-penta- and 2,3,4,2′,3′,6′-hexachlorobiphenyls in rats, mice, hamsters and guinea pigs. Xenobiotica 35:85–96

    Article  CAS  Google Scholar 

  • Haraguchi K, Koga N, Kato Y (2005b) Comparative metabolism of polychlorinated biphenyls and tissue distribution of persistent metabolites in rats, hamsters, and guinea pigs. Drug Metab Dispos 33:373–380

    Article  CAS  Google Scholar 

  • Harju MT, Haglund P (1999) Determination of the rotational energy barriers of atropisomeric polychlorinated biphenyls. Fresenius J Anal Chem 364:219–223

    Article  CAS  Google Scholar 

  • Harrad S, Ren J, Hazrati S, Robson M (2006) Chiral signatures of PCB#s 95 and 149 in indoor air, grass, duplicate diets and human faeces. Chemosphere 63:1368–1376

    Article  CAS  Google Scholar 

  • Holoubek I (2006) The national implementation plan for the implementation of the Stockholm Convention in the Czech Republic. TOCOEN, Brno

    Google Scholar 

  • Hu D, Hornbuckle KC (2010) Inadvertent polychlorinated biphenyls in commercial paint pigments. Environ Sci Technol 44:2822–2827

    Article  CAS  Google Scholar 

  • Hu X, Adamcakova-Dodd A, Lehmler H-J, Hu D, Kania-Korwel I, Hornbuckle KC, Thorne PS (2010) Time course of congener uptake and elimination in rats after short-term inhalation exposure to an airborne polychlorinated biphenyl (PCB) mixture. Environ Sci Technol 44:6893–6900

    Article  CAS  Google Scholar 

  • Hu D, Lehmler HJ, Martinez A, Wang A, Hornbuckle KC (2012a) Atmospheric PCB congeners across Chicago. Atmos Environ 44:1550–1557

    Article  CAS  Google Scholar 

  • Hu X, Adamcakova-Dodd A, Lehmler HJ, Hu D, Hornbuckle K, Thorne PS (2012b) Subchronic inhalation exposure study of an airborne polychlorinated biphenyl mixture resembling the Chicago ambient air congener profile. Environ Sci Technol 46:9653–9662

    Article  CAS  Google Scholar 

  • Hu X, Adamcakova-Dodd A, Thorne PS (2014) The fate of inhaled (14)C-labeled PCB11 and its metabolites in vivo. Environ Int 63:92–100

    Article  CAS  Google Scholar 

  • Hühnerfuss H, Bergman A, Larsson C, Peters N, Westendorf J (2003) Enantioselective transformation of atropisomeric PCBs or of their methylsulfonyl metabolites by rat hepatocytes? Organohalogen Compd 62:265–268

    Google Scholar 

  • James MO (2001) Polychlorinated biphenyls: metabolism and metabolites. In: Robertson LW, Hansen LG (eds) PCBs: recent advances in environmental toxicology and health effects. The University Press of Kentucky, Lexington, pp 35–46

    Google Scholar 

  • Jamshidi A, Hunter S, Hazrati S, Harrad S (2007) Concentrations and chiral signatures of polychlorinated biphenyls in indoor and outdoor air and soil in a major UK conurbation. Environ Sci Technol 41:2153–2158

    Article  CAS  Google Scholar 

  • Jerina DM, Daly JW (1974) Arene oxides. New aspect of drug metabolism. Science 185:573–582

    Article  CAS  Google Scholar 

  • Jödicke B, Ende M, Helge H, Neubert D (1992) Fecal excretion of PCDDs/PCDFs in a 3-month-old breast-fed infant. Chemosphere 25:1061–1065

    Article  Google Scholar 

  • Kania-Korwel I, Lehmler HJ (2013) Assigning atropisomer elution orders using atropisomerically enriched polychlorinated biphenyl fractions generated by microsomal metabolism. J Chromatogr A 1278:133–144

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Garrison AW, Avants JK, Hornbuckle KC, Robertson LW, Sulkowski WW, Lehmler H-J (2006) Distribution of chiral PCBs in selected tissues in the laboratory rat. Environ Sci Technol 40:3704–3710

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Shaikh N, Hornbuckle KC, Robertson LW, Lehmler H-J (2007) Enantioselective disposition of PCB 136 (2,2′,3,3′,6,6′-hexachlorobiphenyl) in C57BL/6 mice after oral and intraperitoneal administration. Chirality 19:56–66

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Hornbuckle KC, Robertson LW, Lehmler HJ (2008a) Influence of dietary fat on the enantioselective disposition of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) in female mice. Food Chem Toxicol 46:637–644

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Hrycay EG, Bandiera S, Lehmler H-J (2008b) 2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136) atropisomers interact enantioselectively with hepatic microsomal cytochrome P450 enzymes. Chem Res Toxicol 21:1295–1303

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Vyas S, Song Y, Lehmler HJ (2008c) Gas chromatographic separation of methoxylated polychlorinated biphenyl atropisomer. J Chromatogr A 1207:146–154

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Xie W, Hornbuckle KC, Robertson LW, Lehmler H-J (2008d) Enantiomeric enrichment of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) in mice after induction of CYP enzymes. Arch Environ Contam Toxicol 55:510–517

    Article  CAS  Google Scholar 

  • Kania-Korwel I, El-Komy MHME, Veng-Pedersen P, Lehmler HJ (2010) Clearance of polychlorinated biphenyl atropisomers is enantioselective in female C57Bl/6 mice. Environ Sci Technol 44:2828–2835

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Duffel MW, Lehmler HJ (2011) Gas chromatographic analysis with chiral cyclodextrin phases reveals the enantioselective formation of hydroxylated polychlorinated biphenyls by rat liver microsomes. Environ Sci Technol 45:9590–9596

    Article  CAS  Google Scholar 

  • Kania-Korwel I, Barnhart CD, Stamou M, Truong KM, El-Komy MH, Lein PJ, Veng-Pedersen P, Lehmler HJ (2012) 2,2′,3,5′,6-Pentachlorobiphenyl (PCB 95) and its hydroxylated metabolites are enantiomerically enriched in female mice. Environ Sci Technol 46:11393–11401

    Article  CAS  Google Scholar 

  • Karasek L, Hajslova J, Rosmus J, Huehnerfuss H (2004) Enantioselective gas chromatographic separation of methylsulfonyl PCBs in seal blubber, pelican muscle and human adipose tissues. Organohalogen Compd 66:408–412

    CAS  Google Scholar 

  • Karasek L, Hajslova J, Rosmus J, Hühnerfuss H (2007) Methylsulfonyl PCB and DDE metabolites and their enentioselective gas chromatographuc separation in human adipose tissues, seal blubber and pelican muscle. Chemosphere 67:S22–S227

    Article  CAS  Google Scholar 

  • Kato S, McKinney JD, Matthews HB (1980) Metabolism of symmetrical hexachlorobiphenyl isomers in the rat. Toxicol Appl Pharmacol 53:389–398

    Article  CAS  Google Scholar 

  • Kelly BC, Gobas FAPC, McLachlan MS (2004) Intestinal absorption and biomagnification of organic contaminants in fish, wildlife and human. Environ Toxicol Chem 23:2324–2336

    Article  CAS  Google Scholar 

  • Klosterhaus S, McKee LJ, Yee D, Kass JM, Wong A (2014) Polychlorinated biphenyls in the exterior caulk of San Francisco Bay Area buildings, California, USA. Environ Int 66:38–43

    Article  CAS  Google Scholar 

  • Kodavanti PRS, Curras-Collazo MC (2010) Neuroendocrine actions of organohalogens: thyroid hormones, arginine vasopressin, and neuroplasticity. Front Neuroendocrinol 31:479–496

    Article  CAS  Google Scholar 

  • Korrick SA, Sagiv SK (2008) Polychlorinated biphenyls, organochlorine pesticides and neurodevelopment. Curr Opin Pediatr 20:198–204

    Article  Google Scholar 

  • Kostyniak P, Hansen L, Widholm J, Fitzpatrick R, Olson J, Helferich J, Kim K, Sable H, Seegal R, Pessah I, Schantz S (2005) Formulation and characterization of an experimental PCB mixture designed to mimic human exposure from contaminated fish. Toxicol Sci 88:400–411

    Article  CAS  Google Scholar 

  • Kuwabara K, Yakushiji T, Watanabe I, Yoshida S, Yoyama K, Kunita N (1979) Increase in the human blood PCB levels promptly following ingestion of fish containing PCBs. Bull Environ Contam Toxicol 21:273–278

    Article  CAS  Google Scholar 

  • Larsson C, Ellerichmann T, Franke S, Athanasiadu M, Hühnerfuss H, Bergman A (1999) Enantiomeric separation of chiral methylsulphonyl PCB congeners in liver and adipose tissue from rats dosed with A50. Organohalogen Compd 40:427–430

    CAS  Google Scholar 

  • Larsson C, Ellerichmann T, Hühnerfuss H, Bergman A (2002) Chiral PCB methyl sulfones in rat tissues after exposure to technical PCBs. Environ Sci Technol 36:2833–2838

    Article  CAS  Google Scholar 

  • Lees PSJ, Corn M, Breysse PN (1987) Evidence for dermal absorption as the major route of body entry during exposure of transformer maintenance and repairmen to PCBs. Am Ind Hyg Assoc J 48:257–264

    Article  CAS  Google Scholar 

  • Lehmler H-J, Robertson LW, Garrison AW, Kodavanti PRS (2005) Effects of PCB 84 enantiomers on [3H] phorbol ester binding in rat cerebellar granule cells and 45Ca2+ - uptake in rat cerebellum. Toxicol Lett 156:391–400

  • Lehmler HJ, Harrad SJ, Hühnerfuss H, Kania-Korwel I, Lee CM, Lu Z, Wong CS (2009) Chiral polychlorinated biphenyl transport, metabolism and distribution: a review. Environ Sci Technol 44:2757–2766

    Article  CAS  Google Scholar 

  • Letcher RJ, Klasson-Wehler E, Bergman A (2000) Methyl sulfone and hydroxylated metabolite of polychlorinated biphenyls. In: Passivirta J (ed) The handbook of environmental chemistry—new types of persistent halogenated compounds. Springer-Verlag, Berlin Heidelberg, pp 315–359

    Google Scholar 

  • Lewis DF, Ioannides C, Parke DV (1998) Cytochromes P450 and species differences in xenobiotic metabolism and activation of carcinogen. Environ Health Perspect 106:633–641

    Article  CAS  Google Scholar 

  • Lu Z, Wong CS (2011) Factors affecting phase I stereoselective biotransformation of chiral polychlorinated biphenyls by rat cytochrome P-450 2B1 isozyme. Environ Sci Technol 45:8298–8305

    Article  CAS  Google Scholar 

  • Lu Z, Kania-Korwel I, Lehmler HJ, Wong CS (2013) Stereoselective formation of mono- and dihydroxylated polychlorinated biphenyls by rat cytochrome P450 2B1. Environ Sci Technol 12184–92

  • Lucier GW, McDaniel OS, Schiller CM, Matthews HB (1978) Structural requirements for the accumulation of chlorinated biphenyl metabolites in the fetal rat intestine. Drug Metab Dispos 6:584–590

    CAS  Google Scholar 

  • Maervoet J, Covaci A, Schepens P, Sandau CD, Letcher R (2004) A reassessment of the nomenclature of polychlorinated biphenyl (PCB) metabolites. Environ Health Perspect 112:291–294

    Article  CAS  Google Scholar 

  • Mannschreck A, Pustet N, Robertson LW, Oesch F, Puttmann M (1985) Enantiomers of polychlorinated-biphenyls semipreparative enrichment by liquid-chromatography. Liebigs Ann Chem 2101–2103

  • Mariussen E, Fonnum F (2006) Neurochemical targets and behavioral effects of organohalogen compounds: an update. Crit Rev Toxicol 36:253–289

    Article  CAS  Google Scholar 

  • Maroni M, Colombi A, Arbosti G, Cantoni S, Foa V (1981a) Occupational exposure to polychlorinated biphenyls in electrical workers. II Health effects. Br J Ind Med 38:55–60

    CAS  Google Scholar 

  • Maroni M, Colombi A, Cantoni S, Ferioli E, Foa V (1981b) Occupational exposure to polychlorinated biphenyls in electrical workers. I Environmental and blood polychlorinated biphenyls concentrations. Br J Ind Med 38:49–54

    CAS  Google Scholar 

  • Matthews HB, Tuey DB (1980) The effect of chlorine position on the distribution and excretion of four hexachlorobiphenyl isomers. Toxicol Appl Pharmacol 53:377–388

    Article  CAS  Google Scholar 

  • Mayes BA, Brown GL, Mondello FJ, Holtzclaw KW, Hamilton SB, Ramsey AA (2002) Dermal absorption in rhesus monkeys of polychlorinated biphenyls from soil contaminated with Aroclor 1260. Regul Toxicol Pharmacol 35:289–295

    Article  CAS  Google Scholar 

  • McLachlan MS (1993) Mass balance of polychlorinated biphenyls and other organochlorine compounds in a lactating cow. J Agric Food Chem 41:474–480

    Article  CAS  Google Scholar 

  • Milanowski B, Lulek J, Lehmler H-J, Kania-Korwel I (2010) Assessment of disposition of chirl polychlorinated biphenyls in female mdr 1a/b knockout versus wild-type mice using multivariate analyses. Environ Int 36:884–892

    Article  CAS  Google Scholar 

  • Nezel T, Müller-Plathe F, Müller MD, Buser H-R (1997) Theoretical considerations about chiral PCBs and their methylthio and methylsulfonyl metabolites being possibly present as stable enantiomers. Chemosphere 35:1895–1906

    Article  CAS  Google Scholar 

  • Niknam Y, Feng W, Cherednichenko G, Dong Y, Joshi SN, Vyas SM, Lehmler HJ, Pessah IN (2013) Structure-activity relationship of selected meta- and para-hydroxylated non-dioxin like polychlorinated biphenyls: from single RyR1 channels to muscle dysfunction. Toxicol Sci 136:500–513

    Article  CAS  Google Scholar 

  • Norström K, Eriksson J, Haglund J, Silvari V, Bergman A (2006) Enantioselective formation of methyl sulfone metabolites of 2,2′,3,3′,4,6′-hexachlorobiphenyl in rat. Environ Sci Technol 40:7649–7655

    Article  CAS  Google Scholar 

  • Ohta C, Haraguchi K, Kato Y, Koga N (2005) In vitro metabolism of 2,2′,3,4′,5,5′,6-heptachlorobiphenyl (CB187) by liver microsomes from rats, hamsters and guinea pigs. Xenobiotica 35:319–330

    Article  CAS  Google Scholar 

  • Ohta C, Haraguchi K, Kato Y, Endo T, Koga N (2013) Species difference in the metabolism of 2, 2′, 3, 4′, 5, 5′-hexachlorobiphenyl (CB146) by animal and human liver microsomes. Fukuoka Igaky Zasshi 104:161–169

    CAS  Google Scholar 

  • Oomen AG, Tolls J, Kruidenier M, Bosgra SSD, Sips AJAM, Groten JP (2001) Availability of polychlorinated biphenyls (PCBs) and lindane for uptake by intestinal Caco-2 cells. Environ Health Perspect 109:731–737

    Article  CAS  Google Scholar 

  • Pakdeesusuk U, Jones WJ, Lee CM, Garrison AW, O'Niell WL, Freedman DL, Coates JT, Wong CS (2003) Changes in enantiomeric fractions (EF) during microbial reductive dechlorination of PCB 132, PCB 149, and Aroclor 1254 in Lake Hartwell sediment microcosms. Environ Sci Technol 37:1100–1107

    Article  CAS  Google Scholar 

  • Pessah IN, Hansen LG, Albertson TE, Garner CE, Ta TA, Do Z, Kim KH, Wong PW (2006) Structure-activity relationship for noncoplanar polychlorinated biphenyl congeners toward the ryanodine receptor-Ca2+ channel complex type 1 (RyR1). Chem Res Toxicol 19:92–101

    Article  CAS  Google Scholar 

  • Pessah IN, Lehmler HJ, Robertson LW, Perez CF, Cabrales E, Bose DD, Feng W (2009) Enantiomeric specificity of (-)-2,2′,3,3′,6,6′-hexachlorobiphenyl toward ryanodine receptor types 1 and 2. Chem Res Toxicol 22:201–207

    Article  CAS  Google Scholar 

  • Pessah IN, Cherednichenko G, Lein PJ (2010) Minding the calcium store: ryanodine receptor activation as a convergent mechanism of PCB toxicity. Pharmacol Ther 125:260–285

    Article  CAS  Google Scholar 

  • Pham-Tuan H, Larsson C, Hoffmann F, Bergman A, Fröba M, Hühnerfuss H (2005) Enantioselective semipreparative HPLC separation of PCB metabolites and their absolute structure elucidation using electronic and vibrational circular dichroism. Chirality 17:266–280

    Article  CAS  Google Scholar 

  • Preston BD, Miller JA, Miller EC (1983) Non-arene oxide aromatic ring hydroxylation of 2,2′,5,5′-tetrachlorobiphenyl as the major metabolic pathway catalyzed by phenobarbital-induced rat liver microsomes. J Biol Chem 258:8304–8311

    CAS  Google Scholar 

  • Püttmann M, Oesch F, Robertson LW, Mannschreck A (1986) Characteristics of polychlorinated biphenyl (PCB) atropisomers. Chemosphere 15:2061–2064

    Article  Google Scholar 

  • Püttmann M, Mannschreck A, Oesch F, Robertson L (1989) Chiral effects in the induction of drug-metabolizing enzymes using synthetic atropisomers of polychlorinated biphenyls (PCBs). Biochem Pharmacol 38:1345–1352

    Article  Google Scholar 

  • Püttmann M, Arand M, Oesch F, Mannschreck A, Robertson LW (1990) Chirality and the induction of xenobiotic-metabolizing enzymes: effects of the atropisomers of the polychlorinated biphenyl 2,2′,3,4,4′,6-hexachlorobiphenyl. In: Frank H, Holmstedt B, Testa B (eds) Chirality and biological activity. Alan R. Liss, Inc., New York, pp 177–184

    Google Scholar 

  • Renaud HJ, Cui JY, Khan M, Klaassen CD (2011) Tissue distribution and gender-divergent expression of 78 cytochrome P450 mRNAs in mice. Toxicol Sci 124:261–277

    Article  CAS  Google Scholar 

  • Robson M, Harrad S (2004) Chiral PCB signatures in air and soil: implications for atmospheric source apportionment. Environ Sci Technol 38:1662–1666

    Article  CAS  Google Scholar 

  • Robson M, Melymuk L, Csiszar SA, Giang A, Diamond ML, Helm PA (2010) Continuing sources of PCBs: the significance of building sealants. Environ Int 36:506–513

    Article  CAS  Google Scholar 

  • Rodman LE, Shedlofsky SI, Mannschreck A, Puttmann M, Swim AT, Robertson LW (1991) Differential potency of atropisomers of polychlorinated biphenyls on cytochrome P450 induction and uroporphyrin accumulation in the chick embryo hepatocyte culture. Biochem Pharmacol 41:915–922

    Article  CAS  Google Scholar 

  • Schantz SL, Widholm JJ, Rice DC (2003) Effects of PCB exposure on neuropsychological function in children. Environ Health Perspect 111:357–376

    Article  CAS  Google Scholar 

  • Schecter A, Colacino J, Haffner D, Patel K, Opel M, Papke O, Birnbaum L (2010) Perfluorinated compounds, polychlorinated biphenyl, and organochlorine pesticide contamination in composite food samples from Dallas, Texas. Environ Health Perspect 118:796–802

    Article  CAS  Google Scholar 

  • Schnellmann R, Putnam C, Sipes I (1983) Metabolism of 2,2′,3,3′,6,6′-hexachlorobiphenyl and 2,2′,4,4′,5,5′-hexachlorobiphenyl by human hepatic microsomes. Biochem Pharmacol 32:3233–3239

    Article  CAS  Google Scholar 

  • Schulz DE, Petrick G, Duinker JC (1989) Complete characterization of polychlorinated biphenyl congeners in commercial Aroclor and Clophen mixtures by multidimensional gas chromatography-electron capture detector. Environ Sci Technol 23:852–859

    Article  CAS  Google Scholar 

  • Schurig V (2001) Separation of enantiomers by gas chromatography. J Chromatogr 906:275–299

    Article  CAS  Google Scholar 

  • Schurig V, Reich S (1998) Determination of the rotational barriers of atropisomeric polychlorinated biphenyls (PCBs) by a novel stopped-flow multidimensional gas chromatographic technique. Chirality 10:316–320

    Article  CAS  Google Scholar 

  • Seegal RF (1996) Epidemiological and laboratory evidence of PCB-induced neurotoxicity. Crit Rev Toxicol 26:709–737

    Article  CAS  Google Scholar 

  • Sipes IG, Slocumb ML, Chen HS, Carter DE (1982) 2,3,6,2′,3′,6′-Hexachlorobiphenyl: distribution, metabolism, and excretion in the dog and the monkey. Toxicol Appl Pharmacol 62:317–324

    Article  CAS  Google Scholar 

  • Song Y, Wagner BA, Witmer JR, Lehmler HJ, Buettner GR (2009) Nonenzymatic displacement of chlorine and formation of free radicals upon the reaction of glutathione with PCB quinones. Proc Natl Acad Sci U S A 106:9725–9730

    Article  CAS  Google Scholar 

  • Su G, Liu X, Gao Z, Xian Q, Feng J, Zhang X, Giesy JP, Wei S, Liu H, Yu H (2012) Dietary intake of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) from fish and meat by residents of Nanjing, China. Environ Int 42:138–143

    Article  CAS  Google Scholar 

  • Sulkowski WW, Kania-Korwel I, Robertson LW, Szafran B, Lulek J (2003) Polychlorinated biphenyls production in Poland. Fresenius Environ Bull 12:152–157

    Google Scholar 

  • Sundström G, Jansson B (1975) The metabolism of 2,2′,3,5′,6-pentachlorobiphenyl in rats, mice and quails. Chemosphere 4:361–370

    Article  Google Scholar 

  • Tampal NM, Robertson LW, Srinivasan C, Ludewig G (2003) Polychlorinated biphenyls are not substrates for the multidrug resistance transporter-1. Toxicol Appl Pharmacol 187:168–177

    Article  CAS  Google Scholar 

  • Tanabe SNY, Tatsukawa R (1981) Absorption efficiency and biological half-life of individual chlorobiphenyls in rats treated with Kanechlor products. Agric Biol Chem 45:717–726

    Article  CAS  Google Scholar 

  • Taniyasu S, Kannan K, Holoubek I, Ansorgova A, Horii Y, Hanari N, Yamashita N, Aldous KM (2003) Isomer-specific analysis of chlorinated biphenyls, naphthalenes and dibenzofurans in Delor: polychlorinated biphenyl preparations from former Czechoslovakia. Environ Pollut 126:169–178

    Article  CAS  Google Scholar 

  • Thomas K, Xue J, Williams R, Jones P, Whitaker D (2012) Polychlorinated biphenyls (PCBs) in school buildings: sources, environmental levels, and exposures. United States Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory

  • Tilson HA, Kodavanti PR (1998) The neurotoxicity of polychlorinated biphenyls. Neurotoxicology 19:517–525

    CAS  Google Scholar 

  • Toda M, Matsumura C, Tsurukawa M, Okuno T, Nakano T, Inoue Y, Mori T (2012) Absolute configuration of atropisomeric polychlorinated biphenyl 183 enantiomerically enriched in human samples. J Phys Chem A 9340–9346

  • US Environmental Protection Agency (2013) Aroclor and other PCB mixtures. http://www.epa.gov/epawaste/hazard/tsd/pcbs/pubs/aroclor.htm. Accessed 14 Oct 2014

  • US Environmental Protection Agency (2014a) PCB-containing fluorescent light ballasts (FLBs) in school buildings. A guide for school administrators and maintenance personnel. http://www.epa.gov/osw/hazard/tsd/pcbs/pubs/ballasts.htm. Accessed 28 Sept 2014

  • US Environmental Protection Agency (2014b) PCBs in caulk in older buildings. http://www.epa.gov/epawaste/hazard/tsd/pcbs/pubs/caulk/index.htm. Accessed 28 Sept 2014

  • Vickers AEM, Sipes G, Brendel K (1986) Metabolism-related spectral characterization and subcellular distribution of polychlorinated biphenyl congeners in isolated rat hepatocytes. Biochem Pharmacol 35:297–306

    Article  CAS  Google Scholar 

  • Voorspoels S, Covaci A, Neels H (2008) Dietary PCB intake in Belgium. Environ Toxicol Pharmacol 25:179–182

    Article  CAS  Google Scholar 

  • Waller SC, He YA, Harlow GR, He YQ, Mash EA, Halpert JR (1999) 2,2′,3,3′,6,6′-hexachlorobiphenyl hydroxylation by active site mutants of cytochrome P450 2B1 and 2B11. Chem Res Toxicol 12:690–699

    Article  CAS  Google Scholar 

  • Warner NA, Martin JW, Wong CS (2009) Chiral polychlorinated biphenyls are biotransformed enantioselectively by mammalian cytochrome P-450 isozymes to form hydroxylated metabolites. Environ Sci Technol 43:114–121

    Article  CAS  Google Scholar 

  • Winneke G (2011) Developmental aspects of environmental neurotoxicology: lessons from lead and polychlorinated biphenyls. J Neurol Sci 308:9–15

    Article  CAS  Google Scholar 

  • Wu X, Pramanik A, Duffel MW, Hrycay EG, Bandiera SM, Lehmler HJ, Kania-Korwel I (2011) 2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136) is enantioselectively oxidized to hydroxylated metabolites by rat liver microsomes. Chem Res Toxicol 24:2249–2257

    Article  CAS  Google Scholar 

  • Wu X, Duffel M, Lehmler H-J (2013a) Oxidation of polychlorinated biphenyls by liver tissue slices from phenobarbital-pretreated mice is congener-specific and atropselective. Chem Res Toxicol 26:1642–1651

    Article  CAS  Google Scholar 

  • Wu X, Kania-Korwel I, Chen H, Stamou M, Dammanahalli KJ, Duffel M, Lein PJ, Lehmler HJ (2013b) Metabolism of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) atropisomers in tissue slices from phenobarbital or dexamethasone-induced rats is sex-dependent. Xenobiotica 43:933–947

    Article  CAS  Google Scholar 

  • Wu X, Kammerer A, Lehmler H-J (2014) Microsomal oxidation of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) results in species-dependent chiral signatures of the hydroxylated metabolites. Environ Sci Technol 48:2436–2444

    Article  CAS  Google Scholar 

  • Xing Y, Lu Y, Dawson RW, Shi Y, Zhang H, Wang T, Liu W, Ren H (2005) A spatial temporal assessment of pollution from PCBs in China. Chemosphere 60:731–739

    Article  CAS  Google Scholar 

  • Yang D, Kania-Korwel I, Ghogha A, Chen H, Stamou M, Bose DD, Pessah IN, Lehmler HJ, Lein PJ (2014) PCB 136 atropselectively alters morphometric and functional parameters of neuronal connectivity in cultured rat hippocampal neurons via ryanodine receptor-dependent mechanisms. Toxicol Sci 379–92

  • Zanger UM, Klein K, Saussele T, Blievernicht J, Hofmann MH, Schwab M (2007) Polymorphic CYP2B6: molecular mechanisms and emerging clinical significance. Pharmacogenomics 8:743–759

    Article  CAS  Google Scholar 

  • Zhai G, Wu X, Lehmler H-J, Schnoor J (2013) Atropisomeric determination of chiral hydroxylated metabolites of polychlorinated biphenyls using HPLC-MS. Chem Cent J 7:183

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support through grants from the National Institute for Environmental Health Sciences/National Institutes of Health (ES05605, ES012475, ES013661 and ES017425) where their own work is cited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Lehmler.

Additional information

Responsible editor: Roland Kallenborn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kania-Korwel, I., Lehmler, HJ. Chiral polychlorinated biphenyls: absorption, metabolism and excretion—a review. Environ Sci Pollut Res 23, 2042–2057 (2016). https://doi.org/10.1007/s11356-015-4150-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4150-2

Keywords

Navigation