Skip to main content
Log in

Adaptive Neutron Radiography Correlation for Simultaneous Imaging of Moisture Transport and Deformation in Hygroscopic Materials

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Neutron radiography is a key non-destructive testing technology for the investigation of moisture transport in materials. However, quantitative moisture measurements in swelling materials are currently challenging due to the lack of referencing between moist and dry state radiographs. A novel adaptive texture correlation algorithm is presented to simultaneously image inhomogeneous moisture distributions and moisture-induced strain fields. The proposed method provides a valuable tool for the study of time- and position-dependent hygromechanical interactions. Moreover, it requires no modification of existing neutron installations. The method was validated against gravimetric moisture content and optic surface deformation measurements. Its applicability was demonstrated for two actual topics in wood science, the investigation of moisture gradients within the growth ring microstructure and the study of moisture transport processes in wood-fiber composites. The algorithm can be widely used to characterize hygroscopic materials with heterogeneous texture, as frequently found in wood constructions, food industry, engineering and soil science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kardjilov N, Manke I, Hilger A, Strobl M, Banhart J (2011) Neutron imaging in materials science. Mater Today 14(6):248–256

    Article  Google Scholar 

  2. Lehmann E, Vontobel P, Kardjilov N (2004) Hydrogen distribution measurements by neutrons. App Radiat Isot 61:503–509

    Article  Google Scholar 

  3. Mannes D, Sonderegger W, Hering S, Lehmann E, Niemz P (2009) Non-destructive determination and quantification of diffusion processes in wood by means of neutron imaging. Holzforschung 63:589–596

    Google Scholar 

  4. Perfect E, Cheng CL, Kang M, Bilheux HZ, Lamanna JM, Gragg MJ, et al. Neutron imaging of hydrogen-rich fluids in geomaterials and engineered porous media: a review. Earth Sci Rev. 2013.

  5. Strobl M, Manke I, Kardjilov N, Hilger A, Dawson M, Banhart J (2009) Advanced in neutron radiography and tomography. J Phys D Appl Phys 42:243001

    Article  Google Scholar 

  6. Katekawa ME, Silva MA (2006) A review of drying models including shrinkage effects. Drying Technol 24(1):5–20

    Article  Google Scholar 

  7. Skaar C (1988) Wood-water relations. Springer, Berlin

    Book  Google Scholar 

  8. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibers. Prog Polym Sci 24:221–274

    Article  Google Scholar 

  9. Sonderegger W, Niemz P (2006) Investigation of swelling and thermal expansion of fibreboard, particleboard and plywood. Eur J Wood Wood Prod 64:11–20

    Article  Google Scholar 

  10. Muszynski L (2006) Empirical data for modeling: methodological aspects in experimentation involving hygromechanical characteristics of wood. Drying Technol 24(9):1115–1120

    Article  Google Scholar 

  11. Hussey DS, Sepernjak D, Weber AZ, Mukundan R, Fairweather J, Brosha EL et al (2012) Accurate measurement of the through-plane water content of proton-exchange membranes using neutron radiography. J Appl Phys 112:104906

    Article  Google Scholar 

  12. Derome D, Rafsanjani A, Hering S, Dressler M, Patera A, Lanverman C et al (2013) The role of water in the behavior of wood. J Build Phys 36(4):398–421

    Article  Google Scholar 

  13. Datta AK (2007) Porous media approaches to studying simultaneous heat and mass transfer in food processes II: Property data and representative results. J Food Eng 80:96–110

    Article  Google Scholar 

  14. Mihoubi D, Bellagi A (2012) Modeling of heat and moisture transfers with stress–strain formation during convective air drying of deformable media. Heat Mass Transfer 48:1697–1705

    Article  Google Scholar 

  15. Lanverman C, Sanabria SJ, Mannes D, Niemz P (2014) Combination of neutron imaging (NI) and digital image correlation (DIC) to determine intra-ring moisture variation in Norway spruce. Holzforschung 68(1):113–122

    Article  Google Scholar 

  16. Rosner S, Riegler M, Vontobel P, Mannes D, Lehmann E, Karlsson B et al (2012) Within-ring movement of free water in dehydrating Norway spruce sapwood visualized by neutron radiography. Holzforschung 66:751–756

    Article  Google Scholar 

  17. Sonderegger W, Hering S, Mannes D, P V, Lehmann E, Niemz P. Quantitative determination of bound water diffusion in multilayer boards by means of neutron imaging. Eur J Wood Wood Prod. 2010;68:341–350

  18. Mannes D, Sanabria SJ, Funk M, Wimmer R, Kranitz K, Niemz P. Water vapour diffusion through historically relevant glutin-based wood adhesives with sorption measurements and neutron radiography. Wood Sci Technol. 2014;(In print).

  19. Sedighi-Gilani M, Vontobel P, Lehmann E, Carmeliet J, Derome D. Liquid uptake in Scots pine sapwood and hardwood visualized and quantified by neutron radiography. Mater Struct. 2013

  20. Aregawi W, Defraeye T, Saneinejad S, Vontobel P, Lehmann E, Carmeliet J et al (2013) Dehydration of apple tissue: Intercomparison of neutron tomography with numerical modelling. Int J Heat Mass Transfer 67:173–182

    Article  Google Scholar 

  21. Fu RS, Pasaogullari U, Shiomi T, Tabuchi Y, Hussey DS, Jacobson DL (2012) High-resolution neutron radiography of through-plane liquid water distribution in polymer electrolyte membrane and gas diffusion layer. J Electrochem Soc 159(9):F545–F553

    Article  Google Scholar 

  22. Dvinskikh SV, Henriksson M, Berglund LA, Furó I. A multinuclear magnetic resonance imaging (MRI) study of wood with adsorbed water: estimating bound water concentration and local wood density. Holzforschung. 2011;65(103–107).

  23. Eitelberger J, Hofstetter K, Dvinskikh SV. A multi-scale approach for simulation of transient moisture transport processes in wood below the fiber saturation point. Compos Sci Technol. 2011;71(1727.1738).

  24. Lanverman C, Falk W, Niemz P (2014) Full-field moisture induced deformation in Norway spruce: intra-ring variation of transverse swelling. Eur J Wood Wood Prod 72:43–52

    Article  Google Scholar 

  25. Rafsanjani A, Lanverman C, Niemz P, Carmeliet J, Derome D (2013) Multiscale analysis of free swelling of Norway spruce. Compos Part A-Appl S 54:70–78

    Article  Google Scholar 

  26. Brombacher V, Michel F, Volkmer T, Niemz P (2012) Investigation of thermal conductivity and moisture behaviour of fibreboard and material combinations. Bauphysik 34(4):157–169

    Article  Google Scholar 

  27. Sutton MA, Orteu J, Schreier HW (2009) Image Correlation for Shape, Motion and Deformation Measurements. Springer, New York, NY, USA

    Google Scholar 

  28. Bay BK (2008) Methods and applications of digital volume correlation. J Strain Anal Eng 43:745

    Article  Google Scholar 

  29. De Boor C (2001) A practical guide to splines. Springer, New York, NY, USA

    MATH  Google Scholar 

  30. Michel F. Bestimmung bauphysikalisch relevanter Eigenschaften bei Materialkombination von porösen Holzfaserplatten und anderen Materialien Bachelor Thesis. Bern University of Applied Sciences - AWCE, 2012

  31. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    Book  Google Scholar 

  32. Forsberg F. X-ray microtromography and digital volume correlation for internal deformation and strain analysis PhD Thesis. Lulea University of Technology, 2008.

  33. Watanabe K, Lazarescu C, Shida S, Avramidis S (2012) A novel method of measuring moisture content distribution in timber during drying using CT scanning and image processing techniques. Drying Technol 30:256–262

    Article  Google Scholar 

  34. Crank J (1975) The mathematics of diffusion. Oxford University Press, New York, NY, USA

    Google Scholar 

  35. Sanabria SJ, Hilbers U, Neuenschwander J, Niemz P, Sennhauser U, Thömen H et al (2013) Modeling and prediction of density distribution and microstructure in particleboards from acoustic properties by correlation of non-contact high-resolution pulsed air-coupled ultrasound and X-ray images. Ultrasonics 53:157–170

    Article  Google Scholar 

  36. Derome D, Rafsanjani A, Patera A, Guyer R, Carmeliet J (2012) Hygromorphic behaviour of cellular material: hysteretic swelling and shrinkage of wood phrobed by phase contrast X-ray tomography. Phylos Mag A 92:3680–3698

    Article  Google Scholar 

  37. Keylwerth R (1964) Investigations on the course of swelling and the dependence of wood density on moisture. Eur J Wood Wood Prod 22:255–258

    Article  Google Scholar 

  38. Popper R, Niemz P, Eberle G (2008) Discussion of the interaction between wood and water based on selected foreign wood species as examples, and the concept of hypothetical hydration water. Bauphysik 30(5):333–339

    Article  Google Scholar 

  39. Svensson S, Toratti T (2002) Mechanical response of wood perpendicular to grain when subjected to changes of humidity. Wood Sci Technol 36:145–156

    Article  Google Scholar 

  40. Burgert I, Fratzl P (2009) Actuation systems in plants as prototypes for bioinspired devices. Phylos Mag A 367:1541–1557

    Google Scholar 

  41. Lehmann EH, Vontobel P, Wiezel L (2001) Properties of the radiography facility NEUTRA at SINQ and its potential for use as a European Reference Facility. Nondestr Testing Eval 16:191–202

    Article  Google Scholar 

  42. Mannes D, Josic L, Lehmann E, Niemz P (2009) Neutron attenuation coefficients for non-invasive quantification of wood properties. Holzforschung 63(4):472–478

    Article  Google Scholar 

  43. Hassanein R K. Correction methods for the quantitative evaluation of thermal neutron tomography. PhD Thesis. ETH Zurich, 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Sanabria.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(M 5.9 kb)

ESM 2

(M 5.6 kb)

ESM 3

(GIF 7984 kb)

(M 5.6 kb)

ESM 4

(GIF 8002 kb)

(MAT 150 mb)

ESM 5

(MAT 1 mb)

ESM 6

(MAT 979 kb)

ESM 7

(MAT 14.7 mb)

ESM 8

(MAT 538 kb)

ESM 9

(MAT 542 kb)

ESM 10

(MAT 8.3 mb)

ESM 11

(TIFF 2.5 mb)

ESM 12

(TIFF 2.5 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanabria, S.J., Lanvermann, C., Michel, F. et al. Adaptive Neutron Radiography Correlation for Simultaneous Imaging of Moisture Transport and Deformation in Hygroscopic Materials. Exp Mech 55, 403–415 (2015). https://doi.org/10.1007/s11340-014-9955-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-014-9955-2

Keywords

Navigation