Skip to main content

Advertisement

Log in

Spatial distribution and physical activity: implications for prevention of cardiovascular diseases

  • Review
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Background

The current lifestyle of the population contributes to the development of cardiovascular diseases (CVD). Physical inactivity has become a major public health concern that is associated with increased risk of morbidity or worsening CVD risk factors. Studies have shown that the area of residence is associated with obesity and physical inactivity.

Aims

In this context, it has been found that the tools of geomatics help to improve public health policies since through these it is possible to improve the environment-health relationship.

Methods

PUBMED and ScienceDirect databases were searched.

Results

Spatial clustering techniques can identify high and low risk areas for physical activity and CVD risk factors. Thus, the highest levels of physical activity are concentrated in places where there is proximity to connecting areas, trails and high density of parks and green areas.

Conclusions

Therefore, the application of geomatics will allow the development of methodologies for the registration of spatiotemporal characteristics of diseases related to different characteristics of people. The present article aims to highlight the relative contribution of spatial distribution on physical activity and its implications for prevention of CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization (2004) WHO publishes definitive atlas on global heart disease and stroke epidemic (The atlas of heart disease and stroke). World Health Organization, Geneva

  2. AHA Statistical Fact Sheet (2003) International cardiovascular disease statistics. American Heart Association

  3. Jackson CF, Wenger NK (2011) Cardiovascular disease in the elderly. Rev Esp Cardiol 64:697–712

    Article  PubMed  Google Scholar 

  4. Mackay J, Mensah GA (2004) The atlas of heart disease and stroke. World Health Organization, Geneva

    Google Scholar 

  5. Palomo IF, Torres GI, Alarcon MA, Maragano PJ, Leiva E, Mujica V (2006) High prevalence of classic cardiovascular risk factors in a population of university students from south central Chile. Rev Esp Cardiol 59:1099–1105

    Article  PubMed  Google Scholar 

  6. Rothwell PM, Algra A, Amarenco P (2011) Medical treatment in acute and long-term secondary prevention after transient ischaemic attack and ischaemic stroke. Lancet 377:1681–1692

    Article  PubMed  Google Scholar 

  7. Reddy KS, Yusuf S (1998) Emerging epidemic of cardiovascular disease in developing countries. Circulation 97:596–601

    Article  CAS  PubMed  Google Scholar 

  8. Marenberg ME, Risch N, Berkman LF, Floderus B, de Faire U (1994) Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med 330:1041–1046

    Article  CAS  PubMed  Google Scholar 

  9. McGinnis JM, Foege WH (1993) Actual causes of death in the United States. JAMA 270:2207–2212

    Article  CAS  PubMed  Google Scholar 

  10. Kesaniemi YK, Danforth E Jr, Jensen MD, Kopelman PG, Lefebvre P, Reeder BA (2001) Dose-response issues concerning physical activity and health: an evidence-based symposium. Med Sci Sports Exerc 33:S351–S358

    Article  CAS  PubMed  Google Scholar 

  11. Swinburn B, Egger G, Raza F (1999) Dissecting obesogenic environments: the development and application of a framework for identifying and prioritizing environmental interventions for obesity. Prev Med 29:563–570

    Article  CAS  PubMed  Google Scholar 

  12. Giles-Corti B, Macintyre S, Clarkson JP, Pikora T, Donovan RJ (2003) Environmental and lifestyle factors associated with overweight and obesity in Perth, Australia. Am J Health Promot 18:93–102

    Article  PubMed  Google Scholar 

  13. Moon G, Quarendon G, Barnard S, Twigg L, Blyth B (2007) Fat nation: deciphering the distinctive geographies of obesity in England. Soc Sci Med 65:20–31

    Article  PubMed  Google Scholar 

  14. Swinburn B, Egger G (2002) Preventive strategies against weight gain and obesity. Obes Rev 3:289–301

    Article  CAS  PubMed  Google Scholar 

  15. Patterson PD, Moore CG, Probst JC, Shinogle JA (2004) Obesity and physical inactivity in rural America. J Rural Health 20:151–159

    Article  PubMed  Google Scholar 

  16. Gonzalez JA (2013) Geographic information systems and geomatics. In: Pelton JN, Madry S, Camacho-Lara S (eds) Handbook of satellite applications. Springer New York, New York, pp 935–954

    Chapter  Google Scholar 

  17. Tanser FC (2002) The application of GIS technology to equitably distribute fieldworker workload in a large, rural South African health survey. Trop Med Int Health 7:80–90

    Article  CAS  PubMed  Google Scholar 

  18. Shaw NT (2012) Geographical information systems and health: current state and future directions. Healthc Inform Res 18:88–96

    Article  PubMed  PubMed Central  Google Scholar 

  19. Carroll LN, Au AP, Detwiler LT, Fu T-C, Painter IS, Abernethy NF (2014) Visualization and analytics tools for infectious disease epidemiology: a systematic review. J Biomed Inform 51:287–298

    Article  PubMed  Google Scholar 

  20. Akilli H, Kayrak M, Arıbas A, Tekinalp M, Ayhan SS, Gündüz M, Alibasic H, Altunbas G, Yazıcı M (2014) The relationship between exercise capacity and masked hypertension in sedentary patients with diabetes mellitus.Clin Exp Hypertens 36(1):9–16

    Article  CAS  PubMed  Google Scholar 

  21. Beunza JJ, Martinez-Gonzalez MA, Ebrahim S, Bes-Rastrollo M, Nunez J, Martinez JA, Alonso A (2007) Sedentary behaviors and the risk of incident hypertension: the SUN Cohort. Am J Hypertens 20:1156–1162

    PubMed  Google Scholar 

  22. de Waure C, Lauret GJ, Ricciardi W, Ferket B, Teijink J, Spronk S, Myriam Hunink MG (2013) Lifestyle interventions in patients with coronary heart disease: a systematic review. Am J Prev Med 45:207–216

    Article  PubMed  Google Scholar 

  23. Lee IM, Rexrode KM, Cook NR, Manson JE, Buring JE (2001) Physical activity and coronary heart disease in women: is “no pain, no gain” passe? JAMA 285:1447–1454

    Article  CAS  PubMed  Google Scholar 

  24. Mujica V, Urzua A, Leiva E, Diaz N, Moore-Carrasco R, Vasquez M, Rojas E, Icaza G, Toro C, Orrego R et al (2010) Intervention with education and exercise reverses the metabolic syndrome in adults. J Am Soc Hypertens 4:148–153

    Article  PubMed  Google Scholar 

  25. Artinian NT, Fletcher GF, Mozaffarian D, Kris-Etherton P, Van Horn L, Lichtenstein AH, Kumanyika S, Kraus WE, Fleg JL, Redeker NS et al (2010) Interventions to promote physical activity and dietary lifestyle changes for cardiovascular risk factor reduction in adults: a scientific statement from the American Heart Association. Circulation 122:406–441

    Article  PubMed  Google Scholar 

  26. Sattelmair J, Pertman J, Ding EL, Kohl HW 3rd, Haskell W, Lee IM (2011) Dose response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation 124:789–795

    Article  PubMed  PubMed Central  Google Scholar 

  27. Birch LL, Fisher JO (1998) Development of eating behaviors among children and adolescents. Pediatrics 101:539–549

    CAS  PubMed  Google Scholar 

  28. Craigie AM, Lake AA, Kelly SA, Adamson AJ, Mathers JC (2011) Tracking of obesity-related behaviours from childhood to adulthood: a systematic review. Maturitas 70:266–284

    Article  PubMed  Google Scholar 

  29. Wittmeier KD, Mollard RC, Kriellaars DJ (2008) Physical activity intensity and risk of overweight and adiposity in children. Obesity (Silver Spring) 16:415–420

    Article  Google Scholar 

  30. Jimenez-Pavon D, Konstabel K, Bergman P, Ahrens W, Pohlabeln H, Hadjigeorgiou C, Siani A, Iacoviello L, Molnar D, De Henauw S et al (2013) Physical activity and clustered cardiovascular disease risk factors in young children: a cross-sectional study (the IDEFICS study). BMC Med 11:172

    Article  PubMed  PubMed Central  Google Scholar 

  31. Laguna M, Ruiz JR, Lara MT, Aznar S (2013) Recommended levels of physical activity to avoid adiposity in Spanish children. Pediatr Obes 8:62–69

    Article  CAS  PubMed  Google Scholar 

  32. Hurt RT, Kulisek C, Buchanan LA, McClave SA (2010) The obesity epidemic: challenges, health initiatives, and implications for gastroenterologists. Gastroenterol Hepatol (NY) 6(12):780–92

    Google Scholar 

  33. Prince SA, Kristjansson EA, Russell K, Billette JM, Sawada MC, Ali A, Tremblay MS, Prud’homme D (2012) Relationships between neighborhoods, physical activity, and obesity: a multilevel analysis of a large Canadian city. Obesity (Silver Spring) 20:2093–2100

    Article  Google Scholar 

  34. Mills JP, Buckley SJ, Mitchell HL, Clarke PJ, Edwards SJ (2005) A geomatics data integration technique for coastal change monitoring. Earth Surf Proc Land 30:651–664

    Article  Google Scholar 

  35. Vacca A, Loddo S, Melis MT, Funedda A, Puddu R, Verona M, Fanni S, Fantola F, Madrau S, Marrone VA et al (2014) A GIS based method for soil mapping in Sardinia, Italy: a geomatic approach. J Environ Manag 138:87–96

    Article  CAS  Google Scholar 

  36. Wieczorek WF, Delmerico AM (2009) Geographic information systems. Comput Stat 1:167–186

    Article  PubMed  PubMed Central  Google Scholar 

  37. Thakur JK, Singh, SK, Ekanthalu VS (2016) Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling. Appl Water Sci 2016:1–14

    Google Scholar 

  38. Mena-Frau C (2005) Geomática para la Ordenación del Territorio. Editorial Universidad de Talca, Talca. pp 17, 27, 59

  39. Hebblewhite M, Haydon DT (2010) Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology. Philos Trans R Soc B: Biol Sci 365:2303–2312

    Article  Google Scholar 

  40. Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004) Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogramm Remote Sens 58:239–258

    Article  Google Scholar 

  41. Ventura SJ (1995) The use of geographic information systems in local government. Public Adm Rev 55:461–467

    Article  Google Scholar 

  42. Rushton G (2003) Public health, GIS, and spatial analytic tools. Annu Rev Public Health 24:43–56

    Article  PubMed  Google Scholar 

  43. Clarke KC, McLafferty SL, Tempalski BJ (1996) On epidemiology and geographic information systems: a review and discussion of future directions. Emerg Infect Dis 2:85–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kistemann T, Dangendorf F, Schweikart J (2002) New perspectives on the use of geographical information systems (GIS) in environmental health sciences. Int J Hyg Environ Health 205:169–181

    Article  PubMed  Google Scholar 

  45. Lin G, Allan DE, Penning MJ (2002) Examining distance effects on hospitalizations using GIS: a study of three health regions in British Columbia, Canada. Environ Plan A 34:2037–2053

    Article  Google Scholar 

  46. McLafferty SL (2003) GIS and health care. Annu Rev Public Health 24:25–42

    Article  PubMed  Google Scholar 

  47. Higgs G (2004) A literature review of the use of GIS-based measures of access to health care services. Health Serv Outcomes Res Method 5:119–139

    Article  Google Scholar 

  48. Riner ME, Cunningham C, Johnson A (2004) Public health education and practice using geographic information system technology. Public Health Nurs 21:57–65

    Article  PubMed  Google Scholar 

  49. Fradelos EC, Papathanasiou IV, Mitsi D, Tsaras K, Kleisiaris CF, Kourkouta L (2014) Health based geographic information systems (GIS) and their applications. Acta Inform Med 22:402–405

    Article  PubMed  PubMed Central  Google Scholar 

  50. Endacott R, Kamel Boulos MN, Manning BR, Maramba I (2009) Geographic information systems for healthcare organizations: a primer for nursing professions. Comput Inform Nurs 27:50–56

    Article  PubMed  Google Scholar 

  51. Omumbo J, Ouma J, Rapuoda B, Craig MH, Lesueur D, Snow RW (1998) Mapping malaria transmission intensity using geographical information systems GIS: an example from Kenya. Ann Trop Med Parasitol 92:7–21

    Article  CAS  PubMed  Google Scholar 

  52. Al-Taiar A, Clark A, Longenecker JC, Whitty CJ (2010) Physical accessibility and utilization of health services in Yemen. Int J Health Geogr 9:38

    Article  PubMed  PubMed Central  Google Scholar 

  53. Suter E, Oelke ND, Adair CE, Armitage GD (2009) Ten key principles for successful health systems integration. Healthc Q 13(Spec No):16–23

    Article  PubMed  PubMed Central  Google Scholar 

  54. Parenteau M-P, Sawada MC (2011) The modifiable areal unit problem (MAUP) in the relationship between exposure to NO2 and respiratory health. Int J Health Geogr 10:58

    Article  PubMed  PubMed Central  Google Scholar 

  55. An L, Tsou M-H, Spitzberg BH, Gupta DK, Gawron JM (2016) Latent trajectory models for space-time analysis: an application in deciphering spatial panel data. Geogr Anal 48:314–336

    Article  Google Scholar 

  56. Boulos MNK (2004) Towards evidence-based, GIS-driven national spatial health information infrastructure and surveillance services in the United Kingdom. Int J Health Geogr 3:1

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ölvingson C, Hallberg J, Timpka T, Lindqvist K (2002) Ethical issues in public health informatics: implications for system design when sharing geographic information. J Biomed Inform 35:178–185

    Article  PubMed  Google Scholar 

  58. Merem EC, Yerramilli S, Twumasi YA, Wesley JM, Robinson B, Richardson C (2011) The applications of GIS in the analysis of the impacts of human activities on south Texas watersheds. Int J Environ Res Public Health 8:2418–2446

    Article  PubMed  PubMed Central  Google Scholar 

  59. Marx S, Phalkey R, Aranda-Jan CB, Profe J, Sauerborn R, Hofle B (2014) Geographic information analysis and web-based geoportals to explore malnutrition in Sub-Saharan Africa: a systematic review of approaches. BMC Public Health 14:1189

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bell BS, Hoskins RE, Pickle LW, Wartenberg D (2006) Current practices in spatial analysis of cancer data: mapping health statistics to inform policymakers and the public. Int J Health Geogr 5:49

    Article  PubMed  PubMed Central  Google Scholar 

  61. Signorini A, Segre AM, Polgreen PM (2011) The use of Twitter to track levels of disease activity and public concern in the US during the influenza A H1N1 pandemic. PLoS One 6:e19467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim EK, Seok JH, Oh JS, Lee HW, Kim KH (2013) Use of hangeul twitter to track and predict human influenza infection. PLoS One 8:e69305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Roth LH, Criss K, Stewart X, McCann K (2009) PrepLink: a novel web-based tool for healthcare emergency planning and response. Biosecur Bioterror 7:85–91

    Article  PubMed  Google Scholar 

  64. Yang W, Mu L (2015) GIS analysis of depression among Twitter users. Appl Geogr 60:217–223

    Article  Google Scholar 

  65. Conger RD, Conger KJ, Martin MJ (2010) Socioeconomic status, family processes, and individual development. J Marriage Fam 72:685–704

    Article  PubMed  PubMed Central  Google Scholar 

  66. Reid N, Carroll MC, Smith BW, Frizado JP (2009) GIS and Economic Development. In: Gatrell JD, Jensen RR (eds) Planning and socioeconomic applications. Springer, Dordrecht, pp 5–28

    Chapter  Google Scholar 

  67. Wright DJ, Duncan SL, Lach D (2009) Social power and GIS technology: a review and assessment of approaches for natural resource management. Ann Assoc Am Geogr 99:254–272

    Article  Google Scholar 

  68. Matthews SA, Moudon AV, Daniel M (2009) Work group II: using geographic information systems for enhancing research relevant to policy on diet, physical activity, and weight. Am J Prev Med 36:S171–S176

    Article  PubMed  Google Scholar 

  69. Brondeel R, Pannier B, Chaix B (2015) Using GPS, GIS, and accelerometer data to predict transportation modes. Med Sci Sports Exerc 47:2669–2675

    Article  PubMed  Google Scholar 

  70. Haselwandter EM, Corcoran MP, Folta SC, Hyatt R, Fenton M, Nelson ME (2015) The built environment, physical activity, and aging in the United States: a state of the science review. J Aging Phys Act 23:323–329

    Article  PubMed  Google Scholar 

  71. Ben-Bassey UP, Oduwole AO, Ogundipe OO (2007) Prevalence of overweight and obesity in Eti-Osa LGA, Lagos, Nigeria. Obes Rev 8:475–479

    Article  CAS  PubMed  Google Scholar 

  72. Tamura K, Puett RC, Hart JE, Starnes HA, Laden F, Troped PJ (2014) Spatial clustering of physical activity and obesity in relation to built environment factors among older women in three US states. BMC Public Health 14:1322

    Article  PubMed  PubMed Central  Google Scholar 

  73. Giles-Corti B, Donovan RJ (2002) The relative influence of individual, social and physical environment determinants of physical activity. Soc Sci Med 54:1793–1812

    Article  PubMed  Google Scholar 

  74. Oreskovic NM, Perrin JM, Robinson AI, Locascio JJ, Blossom J, Chen ML, Winickoff JP, Field AE, Green C, Goodman E (2015) Adolescents’ use of the built environment for physical activity. BMC Public Health 15:251

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lee RE, Mama SK, Medina AV, Ho A, Adamus HJ (2012) Neighborhood factors influence physical activity among African American and Hispanic or Latina women. Health Place 18:63–70

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wang Z (2014) Nearby outdoor environments and seniors physical activities. Front Archit Res 3:265–270

    Article  Google Scholar 

  77. Weimann H, Björk J, Rylander L, Bergman P, Eiben G (2015) Neighborhood environment and physical activity among young children: a cross-sectional study from Sweden. Scand J Public Health 43:283–293

    Article  PubMed  Google Scholar 

  78. Carlos M, Fuentes Eduardo, Ormazábal Yony, Palomo-Vélez Gonzalo, Palomo I (2014) Role of access to parks and markets with anthropometric measurements, biological markers, and a healthy lifestyle. Int J Environ Health Res 25:373–383

    Google Scholar 

  79. Bancroft C, Joshi S, Rundle A, Hutson M, Chong C, Weiss CC, Genkinger J, Neckerman K, Lovasi G (2015) Association of proximity and density of parks and objectively measured physical activity in the United States: A systematic review. Soc Sci Med 138:22–30

    Article  PubMed  Google Scholar 

  80. Ward JSD, Scott J, Jarden Aaron, Stewart Tom (2016) The impact of children’s exposure to greenspace on physical activity, cognitive development, emotional wellbeing, and ability to appraise risk. Health place 40:44–50

    Article  PubMed  Google Scholar 

  81. Stewart OT, Moudon AV, Fesinmeyer MD, Zhou C, Saelens BE (2016) The association between park visitation and physical activity measured with accelerometer, GPS, and travel diary. Health Place 38:82

    Article  PubMed  PubMed Central  Google Scholar 

  82. Cooper AR, Page AS, Wheeler BW, Griew P, Davis L, Hillsdon M, Jago R (2010) Mapping the walk to school using accelerometry combined with a global positioning system. Am J Prev Med 38:178–183

    Article  PubMed  Google Scholar 

  83. Ian Janssen AR (2015) Undeveloped green space and free-time physical activity in 11 to 13-year-old children. Int J Behav Nutr Phys Act 12:1

    Article  Google Scholar 

  84. Gilliland JA, Clark AF, Tucker P, Prapavessis H, Avison W, Wilk P (2015) The ACT-i-Pass study protocol: how does free access to recreation opportunities impact children’s physical activity levels? BMC Public Health 15:1

    Article  Google Scholar 

  85. Cooper AR, Page AS, Wheeler BW, Hillsdon M, Griew P, Jago R (2010) Patterns of GPS measured time outdoors after school and objective physical activity in English children: the PEACH project. Int J Behav Nutr Phys Act 7:1

    Article  Google Scholar 

  86. Oreskovic N, Perrin J, Robinson A, Locascio J, Blossom J, Chen M, Winickoff J, Field A, Green C, Goodman E (2015) Adolescents’ use of the built environment for physical activity. BMC Public Health 15:1–9

    Article  Google Scholar 

  87. Quigg R, Gray A, Reeder AI, Holt A, Waters DL (2010) Using accelerometers and GPS units to identify the proportion of daily physical activity located in parks with playgrounds in New Zealand children. Prev Med 50:235–240

    Article  PubMed  Google Scholar 

  88. Pawlowski CS, Anderson HB, Troelsen J, Schipperijn J (2016) Children’s physical activity behavior during school recess: a pilot study using GPS, accelerometer, participant observation, and go-along interview. PLOS One 11(2):e0148786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Meseck K, Jankowska MM, Schipperijn J, Natarajan L, Godbole S, Carlson J, Takemoto M, Crist K, Kerr J (2016) Is missing geographic positioning system data in accelerometry studies a problem, and is imputation the solution? Geospat Health 11(2):403

    Article  PubMed  PubMed Central  Google Scholar 

  90. Dessing D, Pierik FH, Sterkenburg RP, van Dommelen P, Maas J, de Vries SI (2013) Schoolyard physical activity of 6–11 year old children assessed by GPS and accelerometry. Int J Behav Nutr Phys Act 10:1

    Article  Google Scholar 

  91. Paul RW, McCrorie CF, Ellaway A (2014) Combining GPS, GIS, and accelerometry to explore the physical activity and environment relationship in children and young people—a review. J Behav Nutr Phys Act 11:1

    Article  Google Scholar 

  92. Collins P, Al-Nakeeb Y, Lyons M (2015) Tracking the commute home from school utilizing gps and heart rate monitoring: establishing the contribution to free-living physical activity. J Phys Act Health 12:155–162

    Article  PubMed  Google Scholar 

  93. Duncan MJ, Badland HM, Mummery WK (2009) Applying GPS to enhance understanding of transport-related physical activity. J Sci Med Sport 12:549–556

    Article  PubMed  Google Scholar 

  94. Krenn PJ, Titze S, Oja P, Jones A, Ogilvie D (2011) Use of global positioning systems to study physical activity and the environment: a systematic review. Am J Prev Med 41:508–515

    Article  PubMed  Google Scholar 

  95. Duncan JS, Badland HM, Schofield G (2009) Combining GPS with heart rate monitoring to measure physical activity in children: a feasibility study. J Sci Med Sport 12:583–585

    Article  PubMed  Google Scholar 

  96. Maddison R, Jiang Y, Vander Hoorn S, Exeter D, Mhurchu C, Dorey E (2010) Describing patterns of plysical activity in adolescents using global positioning systems and accelerometry. Pediatr Exerc Sci 22:392–407

    Article  PubMed  Google Scholar 

  97. Cradock AL, Melly SJ, Allen JG, Morris JS, Gortmaker SL (2009) Youth destinations associated with objective measures of physical activity in adolescents. J Adolesc Health 45:S91–S98

    Article  PubMed  PubMed Central  Google Scholar 

  98. Robinson AI, Oreskovic NM (2013) Comparing self-identified and census-defined neighborhoods among adolescents using GPS and accelerometer. Int J Health Geogr 12:57

    Article  PubMed  PubMed Central  Google Scholar 

  99. Edwards N, Hooper P, Knuiman M, Foster S, Giles-Corti B (2015) Associations between park features and adolescent park use for physical activity. Int J Behav Nutr Phys Act 12:21

    Article  PubMed  PubMed Central  Google Scholar 

  100. Pietilä M, Neuvonen M, Borodulin K, Korpela K, Sievänen T, Tyrväinen L (2015) Relationships between exposure to urban green spaces, physical activity and self-rated health. J Outdoor Recreat Tour 10:44–54

    Article  Google Scholar 

  101. Mandic S, Mountfort A, Hopkins D, Flaherty C, Williams J, Brook E, Wilson G, Moore A (2015) Built Environment and Active Transport to School (BEATS) Study: multidisciplinary and multi-sector collaboration for physical activity promotion (El estudio «Entorno construido y desplazamiento activo a la escuela (BEATS)»: colaboración multidisciplinaria). Retos 2015:197–202

    Google Scholar 

  102. Wheeler BW, Cooper AR, Page AS, Jago R (2010) Greenspace and children’s physical activity: a GPS/GIS analysis of the PEACH project. Prev Med 51:148–152

    Article  PubMed  Google Scholar 

  103. Riva M, Gauvin L, Richard L (2007) Use of local area facilities for involvement in physical activity in Canada: insights for developing environmental and policy interventions. Health Promot Int 22:227–235

    Article  PubMed  Google Scholar 

  104. Drenowatz C, Eisenmann JC, Pfeiffer KA, Welk G, Heelan K, Gentile D, Walsh D (2010) Influence of socio-economic status on habitual physical activity and sedentary behavior in 8- to 11-year old children. BMC Public Health 10:214

    Article  PubMed  PubMed Central  Google Scholar 

  105. Jin Y, Jones-Smith JC (2015) Associations between family income and children’s physical fitness and obesity in California, 2010–2012. Prev Chronic Dis 12:E17

    PubMed  PubMed Central  Google Scholar 

  106. Lebel A, Pampalon R, Hamel D, Theriault M (2009) The geography of overweight in Quebec: a multilevel perspective. Can J Public Health 100:18–23

    PubMed  Google Scholar 

  107. Lebel A, Riva M, Pampalon R, Theriault M (2010) The geography of overweight in Quebec: analyzing and visualizing spatial inequalities using second-level residuals. Can J Public Health 101:133–137

    PubMed  Google Scholar 

  108. Khan MM, Kraemer A (2009) Factors associated with being underweight, overweight and obese among ever-married non-pregnant urban women in Bangladesh. Singap Med J 50:804–813

    CAS  Google Scholar 

  109. Cleland V, Hume C, Crawford D, Timperio A, Hesketh K, Baur L, Welch N, Salmon J, Ball K (2010) Urban-rural comparison of weight status among women and children living in socioeconomically disadvantaged neighbourhoods. Med J Aust 192:137–140

    PubMed  Google Scholar 

  110. Regidor E, Gutierrez-Fisac JL, Ronda E, Calle ME, Martinez D, Dominguez V (2008) Impact of cumulative area-based adverse socioeconomic environment on body mass index and overweight. J Epidemiol Community Health 62:231–238

    Article  CAS  PubMed  Google Scholar 

  111. Slater J, Green C, Sevenhuysen G, O’Neil J, Edginton B (2009) Socio-demographic and geographic analysis of overweight and obesity in Canadian adults using the Canadian Community Health Survey (2005). Chronic Dis Can 30:4–15

    CAS  PubMed  Google Scholar 

  112. Chen TJ, Modin B, Ji CY, Hjern A (2011) Regional, socioeconomic and urban-rural disparities in child and adolescent obesity in China: a multilevel analysis. Acta Paediatr 100:1583–1589

    Article  PubMed  Google Scholar 

  113. Burns M (2015) An examination of the impact of healthy community design on physical activity and nutrition habits in low income Southern Nevada residents. In: 143rd APHA annual meeting and exposition (October 31–November 4, 2015). APHA

  114. Julianne Williams PS, Townsend Nick, Matthews Anne, Burgoine Thomas, Mumtaz Lorraine, Rayner Mike (2015) Associations between food outlets around schools and bmi among primary students in England: a cross-classified multi-level analysis. PLoS One 10:e0132930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Ji Zhang HX, Cheng Xi, Wang Zhihong, Zhai Fengying, Wang Youfa, Wang Huijun (2016) Influence of proximities to food establishments on body mass index among children in China. Asia Pac J Clin Nutr 25:134–141

    PubMed  Google Scholar 

  116. Christine PJ, Auchincloss AH, Bertoni AG, Carnethon MR, Sánchez BN, Moore K, Adar SD, Horwich TB, Watson KE, Roux AVD (2015) Longitudinal associations between neighborhood physical and social environments and incident type 2 diabetes mellitus: the multi-ethnic study of atherosclerosis (MESA). JAMA Intern Med 175:1311–1320

    Article  PubMed  PubMed Central  Google Scholar 

  117. King AC, Sallis JF, Frank LD, Saelens BE, Cain K, Conway TL, Chapman JE, Ahn DK, Kerr J (2011) Aging in neighborhoods differing in walkability and income: associations with physical activity and obesity in older adults. Soc Sci Med 73:1525–1533

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos Mena or Iván Palomo.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Ethical approval

The protocol was authorized by the ethics committee of the Universidad de Talca in accordance with the Declaration of Helsinki (approved by the 18th World Medical Assembly in Helsinki, Finland, 1964).

Informed consent

Informed consent was obtained from all the patients included in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mena, C., Fuentes, E., Ormazábal, Y. et al. Spatial distribution and physical activity: implications for prevention of cardiovascular diseases. Sport Sci Health 13, 9–16 (2017). https://doi.org/10.1007/s11332-017-0349-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-017-0349-6

Keywords

Navigation