Skip to main content
Log in

Cycle length identifies obstructive sleep apnea and central sleep apnea in heart failure with reduced ejection fraction

  • Sleep Breathing Physiology and Disorders • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Aim

To clarify whether unmasking of central sleep apnea during continuous positive airway pressure (CPAP) initiation can be identified from initial diagnostic polysomnography (PSG) in patients with heart failure with reduced ejection fraction (HFREF) and obstructive sleep apnea (OSA)

Materials and methods

Forty-three consecutive patients with obstructive sleep apnea and central sleep apnea (OSA/CSA) in HFREF were matched with 43 HFREF patients with OSA and successful CPAP initiation. Obstructive apneas during diagnostic PSG were then analyzed for cycle length (CL), ventilation length (VL), apnea length (AL), time to peak ventilation (TTPV), and circulatory delay (CD). We calculated duty ratio (DR) as the ratio of VL/CL and mathematic loop gain (LG).

Results

While AL was similar, CL, VL, TTPV, CD, and DR was significantly longer in patients with OSA/CSA compared to those with OSA, and LG was significantly higher. Receiver operator curves identified optimal cutoff values of 50.2 s for CL (area under the curve (AUC) 0.85, 29.2 s for VL (AUC 0.92), 11.5 s for TTPV (AUC 0.82), 26.4 s for CD (AUC 0.79), and 3.96 (AUC 0.78)) respectively for LG to identify OSA/CSA.

Conclusion

OSA/CSA in HFREF can be identified by longer CL, VL, TTPV, and CD from obstructive events in initial diagnostic PSG. The underlying mechanisms seem to be the presence of an increased LG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, ESC Scientific Document Group (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37:2129–2200

    Article  Google Scholar 

  2. Arzt M, Woehrle H, Oldenburg O, Graml A, Suling A, Erdmann E, Teschler H, Wegscheider K, SchlaHF Investigators (2016) Prevalence and predictors of sleep-disordered breathing in patients with stable chronic heart failure: the SchlaHF registry. JACC Heart Fail 4:116–125

    Article  Google Scholar 

  3. Oldenburg O, Lamp B, Faber L, Teschler H, Horstkotte D, Töpfer V (2007) Sleep-disordered breathing in patients with symptomatic heart failure: a contemporary study of prevalence in and characteristics of 700 patients. Eur J Heart Fail 9:251–257

    Article  Google Scholar 

  4. Levy P, Ryan S, Oldenburg O, Parati G (2013) Sleep apnoea and the heart. Eur Respir Rev 22:333–352

    Article  Google Scholar 

  5. Oldenburg O, Wellmann B, Buchholz A, Bitter T, Fox H, Thiem U, Horstkotte D, Wegscheider K (2016) Nocturnal hypoxaemia is associated with increased mortality in stable heart failure patients. Eur Heart J 37:1695–1703

    Article  Google Scholar 

  6. Bitter T, Westerheide N, Prinz C, Hossain MS, Vogt J, Langer C, Horstkotte D, Oldenburg O (2011) Cheyne-Stokes respiration and obstructive sleep apnoea are independent risk factors for malignant ventricular arrhythmias requiring appropriate cardioverter-defibrillator therapies in patients with congestive heart failure. Eur Heart J 32:61–74

    Article  Google Scholar 

  7. Kasai T, Narui K, Dohi T, Yanagisawa N, Ishiwata S, Ohno M, Yamaguchi T, Momomura SI (2008) Prognosis of patients with heart failure and obstructive sleep apnea treated with continuous positive airway pressure. Chest 133:690–696

    Article  Google Scholar 

  8. Randerath WJ, Nothofer G, Priegnitz C, Anduleit N, Treml M, Kehl V, Galetke W (2012) Long-term auto-servoventilation or constant positive pressure in heart failure and coexisting central with obstructive sleep apnea. Chest 142:440–447

    Article  CAS  Google Scholar 

  9. Bitter T, Westerheide N, Hossain MS, Lehmann R, Prinz C, Kleemeyer A, Horstkotte D, Oldenburg O (2011) Complex sleep apnoea in congestive heart failure. Thorax 66:402–407

    Article  Google Scholar 

  10. Wedewardt J, Bitter T, Prinz C, Faber L, Horstkotte D, Oldenburg O (2010) Cheyne-Stokes respiration in heart failure: cycle length is dependent on left ventricular ejection fraction. Sleep Med 11:137–142

    Article  Google Scholar 

  11. Efken C, Bitter T, Prib N, Horstkotte D, Oldenburg O (2013) Obstructive sleep apnoea: longer respiratory event lengths in patients with heart failure. Eur Respir J 41:1340–1346

    Article  Google Scholar 

  12. Sands SA, Edwards BA, Kee K, Turton A, Skuza EM, Roebuck T, O'Driscoll DM, Hamilton GS, Naughton MT, Berger PJ (2011) Loop gain as a means to predict a positive airway pressure suppression of Cheyne-Stokes respiration in patients with heart failure. Am J Respir Crit Care Med 184:1067–1075

    Article  Google Scholar 

  13. Randerath W, Verbraecken J, Andreas S, Arzt M, Bloch KE, Brack T, Buyse B, de Backer W, Eckert DJ, Grote L, Hagmeyer L, Hedner J, Jennum P, la Rovere MT, Miltz C, McNicholas WT, Montserrat J, Naughton M, Pepin JL, Pevernagie D, Sanner B, Testelmans D, Tonia T, Vrijsen B, Wijkstra P, Levy P (2017) Definition, discrimination, diagnosis and treatment of central breathing disturbances during sleep. Eur Respir J 49:1600959

    Article  Google Scholar 

  14. Mayer G et al (2017) S3-Leitlinie Nicht erholsamer Schlaf/Schlafstörungen–Kapitel “Schlafbezogene Atmungsstörungen”. Somnologie 20:597–S180

    Google Scholar 

  15. Mayer G, Rodenbeck A, Geisler P, Schulz H (2015) International classification of sleep disorders: overview of the changes in ICSD-3. Somnologie 19:116–125

    Article  Google Scholar 

  16. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, Marcus CL, Mehra R, Parthasarathy S, Quan SF, Redline S, Strohl KP, Davidson Ward SL, Tangredi MM, American Academy of Sleep Medicine (2012) Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. J Clin Sleep Med 8:597–619

    PubMed  PubMed Central  Google Scholar 

  17. Stanchina M, Robinson K, Corrao W, Donat W, Sands S, Malhotra A (2015) Clinical use of loop gain measures to determine continuous positive airway pressure efficacy in patients with complex sleep apnea: a pilot study. Ann Am Thorac Soc 12:1351–1357

    Article  Google Scholar 

  18. Oldenburg O (2012) Cheyne-Stokes respiration in chronic heart failure. Circ J 76:2305–2317

    Article  Google Scholar 

  19. Hall M et al (1996) Cycle length of periodic breathing in patients with and without heart failure. Am J Respir Crit Care Med 154:376–381

    Article  CAS  Google Scholar 

  20. Solin P, Roebuck T, Swieca J, Walters E, Naughton M (1998) Effects of cardiac dysfunction on non-hypercapnic central sleep apnea. Chest 113:104–110

    Article  CAS  Google Scholar 

  21. Ryan C, Bradley T (2005) Periodicity of obstructive sleep apnea in patients with and without heart failure. Chest 127:536–542

    Article  Google Scholar 

  22. Oldenburg O, Bitter T, Wiemer M, Langer C, Horstkotte D, Piper C (2009) Pulmonary capillary wedge pressure and pulmonary arterial pressure in heart failure patients with sleep-disordered breathing. Sleep Med 10:726–730

    Article  Google Scholar 

  23. Agostoni P (2008) Mechanisms of periodic breathing during exercise in patients with chronic heart failure<xref rid=‘AFF1’>*</xref>. Chest J 133:197–203

    Article  Google Scholar 

  24. Rubin A, Gottlieb S, Gold A, Schwartz A, Smith P (2004) The role of feedback delay in periodic breathing. Thorax 59:174–177

    Article  CAS  Google Scholar 

  25. Churchill E, Cope O, Churchill E, Cope O (1929) The rapid shallow breathing resulting from pulmonary congestion and edema. ( From the Surgical Laboratories, Massachusetts General Host ~ tal, Boston.) ( Received for publication, December 12, 1928.) Experimental studies by Dunn ( 1 ) demonstrated. J Exp Med 49:531–537

    Article  CAS  Google Scholar 

  26. Solin P, Bergin P, Richardson M, Kaye DM, Walters EH, Naughton MT (1999) Influence of pulmonary capillary wedge pressure on central apnea in heart failure. Circulation 99:1574–1579

    Article  CAS  Google Scholar 

  27. Yiu KH et al (2008) Alleviation of pulmonary hypertension by cardiac resynchronization therapy is associated with improvement in central sleep apnea. Pacing Clin Electrophysiol 31:1522–1527

    Article  Google Scholar 

  28. Dernaika T, Tawk M, Nazir S, Younis W, Kinasewitz GT (2007) Pressure-related central sleep apnea the significance and outcome of continuous positive airway pressure-related central sleep apnea during split-night sleep studies. Chest 132:81–87

    Article  Google Scholar 

  29. Javaheri S, Smith J, Chung E (2009) The prevalence and natural history of complex sleep apnea. J Clin Sleep Med 5:205–211

    PubMed  PubMed Central  Google Scholar 

  30. Liu D, Armitstead J, Benjafield A, Shao S, Malhotra A, Cistulli PA, Pepin JL, Woehrle H (2017) Trajectories of emergent central sleep apnea during CPAP therapy. Chest 152:751–760

    Article  Google Scholar 

  31. Morgenthaler TI, Kuzniar TJ, Wolfe LF, Willes L, McLain WC III, Goldberg R (2014) The complex sleep apnea resolution study: a prospective randomized controlled trial of continuous positive airway pressure versus adaptive servoventilation therapy. Sleep 37:927–934

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bitter.

Ethics declarations

The study was approved by the Ethical Review Board of the Ruhr University, Bochum, and has therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Conflict of interest

Olaf Oldenburg reports personal fees from ResMed, personal fees from LivaNova, personal fees from Novartis, and personal fees from Bayer, outside the submitted work. The other authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bitter, T., Özdemir, B., Fox, H. et al. Cycle length identifies obstructive sleep apnea and central sleep apnea in heart failure with reduced ejection fraction. Sleep Breath 22, 1093–1100 (2018). https://doi.org/10.1007/s11325-018-1652-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-018-1652-4

Keywords

Navigation