Skip to main content

Advertisement

Log in

Bone mineral density in patients with obstructive sleep apnea syndrome

  • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

Obstructive sleep apnea syndrome (OSAS) is a disorder that is characterized by repetitive pauses in breathing during sleep. Airway obstruction episodes can lead to ischemia or hypoxia in tissues. Hypoxia may also have an effect on bone metabolism. In this study, we aim to investigate both the bone metabolic abnormalities and bone mineral density (BMD) in OSAS patients compared to individuals without OSAS.

Methods

Twenty-one male patients with OSAS and 26 control subjects, also male, enrolled in this study. Serum calcium, phosphorus, alkaline phosphatase, and urinary desoxypiridinoline levels were measured in all participants, and BMD was evaluated using DEXA (Hologic QDR 2000). The BMD was measured in the lumbar spine (L1–L4), the femoral neck, and total femur region.

Results

No statistically significant difference was noted between the two groups with respect to demographic data, except for body mass index (BMI). We adjusted the statistical analyses in line with the BMI and noted significant differences between OSAS patients and control subjects with regard to lumbar L1–L4 t score, lumbar L1–L4 BMD, and femoral neck BMD values (p ≤ 0.001). We find significant correlations with lumbar L1-L4 BMD (r = −0.4; p = 0.023) and lumbar L1–L4 t score values (r = −0.5; p = 0.012).

Conclusion

Our study indicates that there is a relationship between OSAS and osteoporosis. However, further controlled studies comprising a greater number of patients are needed to investigate the relationship between osteoporosis and OSAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S (1993) The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 328:1230–1235

    Article  PubMed  CAS  Google Scholar 

  2. Ohisa N, Ogawa H, Murayama N, Yoshida K (2011) A novel EEG index for evaluating the sleep quality in patients with obstructive sleep apnea–hypopnea syndrome. Tohoku J Exp Med 223:285–289. doi:10.1620/tjem.223.285

    Article  PubMed  Google Scholar 

  3. Collop NA (2005) Obstructive sleep apnea syndromes. Semin Respir Crit Care Med 26:13–24. doi:10.1055/s-2005-864198

    Article  PubMed  Google Scholar 

  4. Nair D, Dayyat EA, Zhang SX, Wang Y, Gozal D (2011) Intermittent hypoxia-induced cognitive deficits are mediated by NADPH oxidase activity in a murine model of sleep apnea. PLoS One 6:e19847. doi:10.1371/journal.pone.0019847

    Article  PubMed  CAS  Google Scholar 

  5. Shamsuzzaman AS, Gersh BJ, Somers VK (2003) Obstructive sleep apnea: implications for cardiac and vascular disease. JAMA 290:1906–1914. doi:10.1001/jama.290.14.1906

    Article  PubMed  CAS  Google Scholar 

  6. Hatipoglu U, Rubinstein I (2003) Inflammation and obstructive sleep apnea syndrome pathogenesis: a working hypothesis. Respiration 70:665–671. doi:10.1159/000075218

    Article  PubMed  Google Scholar 

  7. Arnett TR, Gibbons DC, Utting JC, Orriss IR, Hoebertz A, Rosendaal M, Meghii S (2003) Hypoxia is a major stimulator of osteoclast formation and bone resorption. J Cell Physiol 196:2–8. doi:10.1002/jcp.10321

    Article  PubMed  CAS  Google Scholar 

  8. Arnett TR (2010) Acidosis, hypoxia and bone. Arch Biochem Biophys 503:103–109. doi:10.1016/j.abb.2010.07.021

    Article  PubMed  CAS  Google Scholar 

  9. Genetos DC, Toupadakis CA, Raheja LF, Wong A, Papanicolaou SE, Fyhrie DP, Loots GG, Yellowley CE (2010) Hypoxia decreases sclerostin expression and increases Wnt signaling in osteoblasts. J Cell Biochem 110:457–467. doi:10.1002/jcb.22559

    PubMed  CAS  Google Scholar 

  10. Basu S, Michaëlsson K, Olofsson H, Johansson S, Melhus H (2001) Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 288:275–279. doi:10.1006/bbrc.2001.5747

    Article  PubMed  CAS  Google Scholar 

  11. Halpern R, Becker L, Iqbal SU, Kazis LE, Macarios D, Badamgarav E (2011) The association of adherence to osteoporosis therapies with fracture, all-cause medical costs, and all-cause hospitalizations: a retrospective claims analysis of female health plan enrollees with osteoporosis. J Manag Care Pharm 17:25–39

    PubMed  Google Scholar 

  12. Tomiyama H, Okazaki R, Inoue D, Ochiai H, Shiina K, Takata Y, Hashimoto H, Yamashina A (2008) Link between obstructive sleep apnea and increased bone resorption in men. Osteoporos Int 19:1185–1192. doi:10.1007/s00198-007-0556-0

    Article  PubMed  CAS  Google Scholar 

  13. Masood A, Phillips B (2000) Sleep apnea. Curr Opin Pulm Med 6:479–484

    Article  PubMed  CAS  Google Scholar 

  14. Ruehland WR, Rochford PD, O’ Donoghue FJ, Pierce RJ, Singh P, Thornton AT (2009) The new AASM criteria for scoring hypopneas: impact on the apnea hypopnea index. Sleep 32:150–157

    PubMed  Google Scholar 

  15. Young T, Peppard PE, Gottlieb DJ (2002) Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med 165:1217–1239. doi:10.1164/rccm.2109080

    Article  PubMed  Google Scholar 

  16. McNicholas WT (2009) Obstructive sleep apnea and inflammation. Prog Cardiovasc Dis 51:392–399. doi:10.1016/j.pcad.2008.10.005

    Article  PubMed  CAS  Google Scholar 

  17. Fava C, Montagnana M, Favaloro EJ, Guidi GC, Lippi G (2011) Obstructive sleep apnea syndrome and cardiovascular diseases. Semin Thromb Hemost 37:280–297. doi:10.1055/s-0031-1273092

    Article  PubMed  Google Scholar 

  18. Malakasioti G, Alexopoulos E, Befani C, Tanou K, Varlami V, Ziogas D, Liakos P, Gourgoulianis K, Kaditis AG (2011) Oxidative stress and inflammatory markers in the exhaled breath condensate of children with OSA. Sleep Breath 2011. doi:10.1007/s11325-011-0560-7

  19. McCord JM (2000) The evolution of free radicals and oxidative stress. Am J Med 108:652–659

    Article  PubMed  CAS  Google Scholar 

  20. McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312:159–163

    Article  PubMed  CAS  Google Scholar 

  21. Papaioannou A, Parkinson W, Ferko N, Probyn L, Ioannidis G, Jurriaans E, Cox G, Cook RJ, Kumbhare D, Adachi JD (2003) Prevalence of vertebral fractures among patients with chronic obstructive pulmonary disease in Canada. Osteoporos Int 14:913–917. doi:10.1007/s00198-003-1449-5

    Article  PubMed  CAS  Google Scholar 

  22. Miller RG, Segal JB, Ashar BH, Leung S, Ahmed S, Siddique S, Rice T, Lanzkron S (2006) High prevalence and correlates of low bone mineral density in young adults with sickle cell disease. Am J Hematol 81:236–241. doi:10.1002/ajh.20541

    Article  PubMed  Google Scholar 

  23. Akeno N, Czyzyk-Krzeska MF, Gross TS, Clemens TL (2001) Hypoxia induces vascular endothelial growth factor gene transcription in human osteoblast-like cells through the hypoxia-inducible factor-2alpha. Endocrinology 142:959–962. doi:10.1210/en.142.2.959

    Article  PubMed  CAS  Google Scholar 

  24. Steinbrech DS, Mehrara BJ, Saadeh PB, Greenwald JA, Spector JA, Gittes GK, Longaker MT (2000) Hypoxia increases insulin like growth factor gene expression in rat osteoblasts. Ann Plast Surg 44:529–534

    Article  PubMed  CAS  Google Scholar 

  25. Salim A, Nacamuli RP, Morgan EF, Giaccia AJ, Longaker MT (2004) Transient changes in oxygen tension inhibit osteogenic differentiation and Runx2 expression in osteoblasts. J Biol Chem 279:40007–40016. doi:10.1074/jbc.M403715200

    Article  PubMed  CAS  Google Scholar 

  26. Orriss IR, Knight GE, Utting JC, Taylor SE, Burnstock G, Arnett TR (2009) Hypoxia stimulates vesicular ATP release from rat osteoblasts. J Cell Physiol 220:155–162. doi:10.1002/jcp.21745

    Article  PubMed  CAS  Google Scholar 

  27. Utting JC, Flanagan AM, Brandao-Burch A, Orriss IR, Arnett TR (2010) Hypoxia 9 stimulates osteoclast formation from human peripheral blood. Cell Biochem Funct 28:374–380. doi:10.1002/jcp.21745

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hulya Uzkeser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uzkeser, H., Yildirim, K., Aktan, B. et al. Bone mineral density in patients with obstructive sleep apnea syndrome. Sleep Breath 17, 339–342 (2013). https://doi.org/10.1007/s11325-012-0698-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-012-0698-y

Keywords

Navigation