Skip to main content
Log in

Radiofluorination of PSMA-HBED via Al18F2+ Chelation and Biological Evaluations In Vitro

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Ga-68-labeled prostate-specific membrane antigen (PSMA) ligands have been used clinically for positron emission tomography (PET) imaging of prostate cancer. However, F-18-labeled compounds offer several advantages, including the potential for delayed imaging, high starting activities enabling multidose preparation, and improved spatial resolution in PET. For F-18 labeling of peptides conjugated with a suitable chelator, a fast and feasible method is the use of [Al18F]2+. In the present study, the radiofluorinations of a well-known PSMA ligand Glu-NH-CO-NH-Lys(Ahx)-HBED-CC (PSMA-HBED) via [Al18F]2+ were performed with respect to various reaction parameters, along with the biological evaluations in a cell experiment.

Procedures

[Al18F]PSMA-HBED was prepared by adding Na[18F]F into a vial containing 0.026 μmol peptide (in 0.05 M NaOAc buffer) and 0.03 μmol AlCl3⋅6H2O (in 0.05 M NaOAc buffer). Then, it was stirred at different temperatures from 1 to 30 min. Afterwards, purification was carried out by solid phase extraction. Biological evaluations were performed in PSMA-positive cell lines LNCaP C4-2, along with a negative control using PC-3 cell lines.

Results

The best labeling results (81 ± 0.5 %, n = 4) were observed with 0.026 μmol peptide (30 °C, 5 min). For preclinical experiments, the production of [Al18F]PSMA-HBED at 35 °C including purification by solid phase extraction (SPE) succeeded within 45 min, resulting in a radiochemical yield of 49 ± 1.2 % (decay-corrected, n = 6, radiochemical purity ≥98 %) at EOS. The labeled peptide revealed serum stability for 4 h as well as a promising binding coefficient (K D) value of 10.3 ± 2.2 nM in cell experiments with PSMA-positive LNCaP C4-2 cells.

Conclusion

An efficient and one-pot method for the radiosynthesis of [Al18F]PSMA-HBED was developed (0.26 μmol of precursor at 35 °C). In cell culture studies, the K D suggests [Al18F]PSMA-HBED as a potential PSMA ligand for future investigations in vivo and clinical applications afterwards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ghosh A, Heston WD (2004) Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem 91:528–539

    Article  CAS  PubMed  Google Scholar 

  2. Elsasser-B U, Reischl G, Wiehr S et al (2009) PET imaging of prostate cancer xenografts prostate-specific membrane antigen. J Nucl Med 50:606–611

    Article  Google Scholar 

  3. Reske SN, Winter G, Baur B et al (2013) Comment on Afshar-Oromieh et al.: PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging 40:969–970

    Article  PubMed Central  PubMed  Google Scholar 

  4. Goodman OB Jr, Barwe SP, Ritter B et al (2007) Interaction of prostate specific membrane antigen with a highly specific antibody against the clathrin and the adaptor protein complex-2. Int J Oncol 31:1199–1203

    CAS  PubMed  Google Scholar 

  5. Ikeda M, Ochi R, Wada A et al (2010) Supramolecular hydrogel capsule showing prostate specific antigen-responsive function for sensing and targeting prostate cancer cells. Chem Sci 1:491–498

    Article  CAS  Google Scholar 

  6. Blank BR, Alayoglu P, Engen W et al (2011) N-substituted glutamyl sulfonamides as inhibitors of glutamate carboxypeptidase II (GCP2). Chem Biol Drug Des 77:241–247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Olson WC, Heston WD, Rajasekaran AK (2007) Clinical trials of cancer therapies targeting prostate-specific membrane antigen. Rev Recent Clin Trials 2:182–190

    Article  CAS  PubMed  Google Scholar 

  8. Kularatne AS, Zhou Z, Yang J et al (2009) Design, synthesis, and preclinical evaluation of prostate-specific membrane antigen targeted 99mTc-radioimaging agents. Mol Pharm 6:790–800

    Article  CAS  PubMed  Google Scholar 

  9. Kularatne SA, Wang K, Santhapuram H-KR, Low PS (2009) Prostate-specific membrane antigen targeted imaging and therapy of prostate cancer using a PSMA inhibitor as a homing ligand. Mol Pharm 6:780–789

    Article  CAS  PubMed  Google Scholar 

  10. Becaud J, Mu L, Karramkam M et al (2009) Direct one-step 18F-labeling of peptides via nucleophilic aromatic substitution. Bioconjug Chem 20:2254–2261

    Article  CAS  PubMed  Google Scholar 

  11. Zhang AX, Murelli RP, Barinka C et al (2010) A remote arene-binding site on prostate specific membrane antigen revealed by antibody-recruiting small molecules. J Am Chem Soc 132:12711–12716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Laverman P, McBride WJ, Sharkey RM et al (2010) A novel facile method of labelling octreotide with 18F-fluorine. J Nucl Med 51:454–461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kularatne SA, Venkatesh C, Santhapuram H-KR et al (2010) Synthesis and biological analysis of prostate-specific membrane antigen-targeted anticancer prodrugs. J Med Chem 53:7767–7777

    Article  CAS  PubMed  Google Scholar 

  14. Chen Y, Pullambhatla M, Foss CA et al (2011) 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res 17:7645–7653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Al-Momani E, Malik N, Machulla H-J et al (2013) Radiosynthesis of [18F]FEt-Tyr-urea-Glu ([18F]FEtTUG) as a new PSMA ligand. J Radioanal Nucl Chem 295:2289–2294

    Article  CAS  Google Scholar 

  16. Olberg DE, Arukwe JM, Grace D et al (2010) One step radiosynthesis of 6-[18F]fluoronicotinic acid 2,3,5,6-tetrafluorophenyl ester ([18F]F-Py-TFP): a new prosthetic group for efficient labelling of biomolecules with fluorine-18. J Med Chem 53:1732–1740

    Article  CAS  PubMed  Google Scholar 

  17. Malik N, Machulla H-J, Solbach C et al (2011) Radiosynthesis of a new PSMA targeting ligand ([18F]FPy-DUPA-Pep). Appl Radiat Isot 69:1014–1018

    Article  CAS  PubMed  Google Scholar 

  18. McBride WJ, D’Souza CA, Sharkey RM et al (2010) Improved 18F-labeling of peptides with a fluoride-aluminum-chelate complex. Bioconjug Chem 21:1331–1340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. D’Souza CA, McBride WJ, Sharkey RM et al (2011) High-yielding aqueous 18F-labeling of peptides via Al18F chelation. Bioconjug Chem 22:1793–1803

    Article  PubMed Central  PubMed  Google Scholar 

  20. McBride WJ, D’Souza CA, Sharkey RM, Goldenberg DM (2012) The radiolabeling of proteins by the [18F]AlF method. Appl Radiat Isot 70:200–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. McBride WJ, D’Souza CA, Karacay H et al (2013) New lyophilized kit for rapid radiofluorination of peptides. Bioconjug Chem 23:538–547

    Article  Google Scholar 

  22. McBride WJ, Sharkey RM, Goldenberg DM (2013) Radiofluorination using aluminum-fluoride (Al18F). EJNMMI Res 3:36

    Article  PubMed Central  PubMed  Google Scholar 

  23. Malik N, Zlatopolskiy B, Reske SN et al (2012) One pot radiofluorination of a new potential PSMA ligand [Al18F]NOTA-DUPA-Pep. J Label Compd Radiopharm 55:320–325

    Article  CAS  Google Scholar 

  24. Wan W, Guo N, Pan D et al (2013) First experience of 18F-Alfatide in lung cancer patients using a new lyophilized kit for rapid radiofluorination. J Nucl Med 54:691–698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Eder M, Wängler B, Knackmuss S et al (2008) Tetrafluorophenolate of HBED-CC: a versatile conjugation agent for 68Ga-labeled small recombinant antibodies. Eur J Nucl Med Mol Imaging 35:1878–1886

    Article  CAS  PubMed  Google Scholar 

  26. Afshar-Oromieh A, Malcher A, Eder M et al (2013) PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging 40:486–495

    Article  CAS  PubMed  Google Scholar 

  27. Rajasekaran AK, Anilkumar G, Christiansen JJ (2005) Is prostate-specific membrane antigen a multifunctional protein? Am J Physiol Cell Physiol 288:975–981

    Article  Google Scholar 

  28. Martin RB (1988) Ternary hydroxide complexes in neutral solutions of Al3+ and F. Biochem Biophys Res Commun 155:1194–1200

    Article  CAS  PubMed  Google Scholar 

  29. Delgado R, Sun Y, Motekaitis RJ, Martel AE (1993) Stabilities of divalent and trivalent metal ion complexes of macrocyclic triazatriacetic acids. Inorg Chem 32:3320–3326

    Article  CAS  Google Scholar 

  30. Kodama K, Kimura E (1995) Complexation reactions of aluminum ions with polyamino polycarboxylic macrocycles in an aqueous solution. Bull Chem Soc Jpn 68:852–857

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noeen Malik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 327 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, N., Baur, B., Winter, G. et al. Radiofluorination of PSMA-HBED via Al18F2+ Chelation and Biological Evaluations In Vitro . Mol Imaging Biol 17, 777–785 (2015). https://doi.org/10.1007/s11307-015-0844-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0844-6

Key words

Navigation