Skip to main content
Log in

Metabolomics, lipidomics and proteomics profiling of myoblasts infected with Trypanosoma cruzi after treatment with different drugs against Chagas disease

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Chagas disease, the most important parasitic infection in Latin America, is caused by the intracellular protozoan Trypanosoma cruzi. To treat this disease, only two nitroheterocyclic compounds with toxic side effects exist and frequent treatment failures are reported. Hence there is an urgent need to develop new drugs. Recently, metabolomics has become an efficient and cost-effective strategy for dissecting drug mode of action, which has been applied to bacteria as well as parasites, such as different Trypanosome species and forms.

Objectives

We assessed if the metabolomics approach can be applied to study drug action of the intracellular amastigote form of T. cruzi in a parasite-host cell system.

Methods

We applied a metabolic fingerprinting approach (DI-MS and NMR) to evaluate metabolic changes induced by six different (candidate) drugs in a parasite-host cell system. In a second part of our study, we analyzed the impact of two drugs on polar metabolites, lipid and proteins to evaluate if affected pathways can be identified.

Results

Metabolic signatures, obtained by the fingerprinting approach, resulted in three different clusters. Two can be explained by already known of mode actions, whereas the three experimental drugs formed a separate cluster. Significant changes induced by drug action were observed in all the three metabolic fractions (polar metabolites, lipids and proteins). We identified a general impact on the TCA cycle, but no specific pathways could be attributed to drug action, which might be caused by a high percentage of common metabolome between a eukaryotic host cell and a eukaryotic parasite. Additionally, ion suppression effects due to differences in abundance between host cells and parasites may have occurred.

Conclusion

We validated the metabolic fingerprinting approach to a complex host-cell parasite system. This technique can potentially be applied in the early stage of drug discovery and could help to prioritize early leads or reconfirmed hits for further development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allman, E. L., Painter, H. J., Samra, J., Carrasquilla, M., & Llinás, M. (2016). Metabolomic profiling of the malaria box reveals antimalarial target pathways. Antimicrobial Agents and Chemotherapy, 60, 6635–6649.

    Article  CAS  Google Scholar 

  • Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17, 166–173.

    Article  CAS  Google Scholar 

  • Besteiro, S., Biran, M., Biteau, N., Coustou, V., Baltz, T., Canioni, P., et al. (2002). Succinate secreted by Trypanosoma brucei is produced by a novel and unique glycosomal enzyme, NADH-dependent fumarate reductase. Journal of Biological Chemistry, 277, 38001–38012.

    Article  CAS  Google Scholar 

  • Biagiotti, M., Dominguez, S., Yamout, N., & Zufferey, R. (2017). Lipidomics and anti-trypanosomatid chemotherapy. Clinical and Translational Medicine, 6, 27.

    Article  Google Scholar 

  • Braverman, N. E., & Moser, A. B. (2012). Functions of plasmalogen lipids in health and disease. Biochimica et Biophysica Acta, 1822, 1442–1452.

    Article  CAS  Google Scholar 

  • Campos, M. C., Phelan, J., Francisco, A. F., Taylor, M. C., Lewis, M. D., Pain, A., et al. (2017). Genome-wide mutagenesis and multi-drug resistance in American trypanosomes induced by the front-line drug benznidazole. Scientific Reports, 7, 14407.

    Article  Google Scholar 

  • Chatelain, E. (2017). Chagas disease research and development: Is there light at the end of the tunnel? Computational and Structural Biotechnology Journal, 15, 98–103.

    Article  Google Scholar 

  • Chouchani, E. T., Pell, V. R., Gaude, E., Aksentijevic, D., Sundier, S. Y., Robb, E. L., et al. (2014). Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 515, 431–435.

    Article  CAS  Google Scholar 

  • Clemmensen, L., Hastie, T., Witten, D., & Ersbøll, B. (2011). Sparse discriminant analysis. Technometrics, 53, 406–413.

    Article  Google Scholar 

  • Cobbold, S. A., Chua, H. H., Nijagal, B., Creek, D. J., Ralph, S. A., & McConville, M. J. (2016). Metabolic dysregulation inuced in Plasmodium falciparum by dihydroartemisinin and other front-line antimalarial drugs. Journal of Infectious Diseases, 213, 276–286.

    Article  CAS  Google Scholar 

  • Creek, D. J., Chua, H. H., Cobbold, S. A., Nijagal, B., MacRae, J. I., Dickerman, B. K., et al. (2016). Metabolomics-based screening of the malaria box reveals both novel and established mechanisms of action. Antimicrobial Agents and Chemotherapy, 60, 6650–6663.

    Article  CAS  Google Scholar 

  • Creek, D. J., Nijagal, B., Kim, D. H., Rojas, F., Matthews, K. R., & Barrett, M. P. (2013). Metabolomics guides rational development of a simplified cell culture medium for drug screening against Trypanosoma brucei. Antimicrobial Agents and Chemotherapy, 57, 2768–2779.

    Article  CAS  Google Scholar 

  • Folch, J., Lees, M., & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226, 497–509.

    CAS  PubMed  Google Scholar 

  • Gaspar, L., Moraes, C. B., Freitas-Junior, L. H., Ferrari, S., Costantino, L., Costi, M. P., et al. (2015). Current and future chemotherapy for Chagas disease. Current Medicinal Chemistry, 22, 4293–4312.

    Article  CAS  Google Scholar 

  • Gazos-Lopes, F., Martin, J. L., Dumoulin, P. C., & Burleigh, B. A. (2017). Host triacylglycerols shape the lipidome of intracellular trypanosomes and modulate their growth. PLoS Pathogens, 13, e1006800.

    Article  Google Scholar 

  • Gazos-Lopes, F., Oliveira, M. M., Hoelz, L. V., Vieira, D. P., Marques, A. F., Nakayasu, E. S., et al. (2014). Structural and functional analysis of a platelet-activating lysophosphatidylcholine of Trypanosoma cruzi. PLoS Neglected Tropical Diseases, 8, e3077.

    Article  Google Scholar 

  • Gika, H. G., Theodoridis, G. A., Wingate, J. E., & Wilson, I. D. (2007). Within-day reproducibility of an HPLC-MS-based method for metabonomic analysis: Application to human urine. Journal of Proteome Research, 6, 3291–3303.

    Article  CAS  Google Scholar 

  • Girones, N., Carbajosa, S., Guerrero, N. A., Poveda, C., Chillon-Marinas, C., & Fresno, M. (2014). Global metabolomic profiling of acute myocarditis caused by Trypanosoma cruzi infection. PLoS Neglected Tropical Diseases, 8, e3337.

    Article  Google Scholar 

  • Guan, X. L., & Maser, P. (2017). Comparative sphingolipidomics of disease-causing trypanosomatids reveal unique lifecycle- and taxonomy-specific lipid chemistries. Scientific Reports, 7, 13617.

    Article  Google Scholar 

  • Hall, B. S., Bot, C., & Wilkinson, S. R. (2011). Nifurtimox activation by trypanosomal type I nitroreductases generates cytotoxic nitrile metabolites. Journal of Biological Chemistry, 286, 13088–13095.

    Article  CAS  Google Scholar 

  • Hall, B. S., & Wilkinson, S. R. (2012). Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrobial Agents and Chemotherapy, 56, 115–123.

    Article  CAS  Google Scholar 

  • Halouska, S., Fenton, R. J., Barletta, R. G., & Powers, R. (2012). Predicting the in vivo mechanism of action for drug leads using NMR metabolomics. ACS Chemical Biology, 7, 166–171.

    Article  CAS  Google Scholar 

  • Johnson, W. E., Li, C., & Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8, 118–127.

    Article  Google Scholar 

  • Katsuno, K., Burrows, J. N., Duncan, K., Hooft van Huijsduijnen, R., Kaneko, T., Kita, K., et al. (2015). Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nature Reviews Drug Discovery, 14, 751–758.

    Article  CAS  Google Scholar 

  • Koelmel, J. P., Kroeger, N. M., Ulmer, C. Z., Bowden, J. A., Patterson, R. E., Cochran, J. A., et al. (2017). LipidMatch: An automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinformatics, 18, 331.

    Article  Google Scholar 

  • Lepesheva, G. I., Hargrove, T. Y., Anderson, S., Kleshchenko, Y., Furtak, V., Wawrzak, Z., et al. (2010). Structural insights into inhibition of sterol 14alpha-demethylase in the human pathogen Trypanosoma cruzi. Journal of Biological Chemistry, 285, 25582–25590.

    Article  CAS  Google Scholar 

  • Mejia, A. M., Hall, B. S., Taylor, M. C., Gomez-Palacio, A., Wilkinson, S. R., Triana-Chavez, O., et al. (2012). Benznidazole-resistance in Trypanosoma cruzi is a readily acquired trait that can arise independently in a single population. Journal of Infectious Diseases, 206, 220–228.

    Article  CAS  Google Scholar 

  • Millerioux, Y., Ebikeme, C., Biran, M., Morand, P., Bouyssou, G., Vincent, I. M., et al. (2013). The threonine degradation pathway of the Trypanosoma brucei procyclic form: The main carbon source for lipid biosynthesis is under metabolic control. Molecular Microbiology, 90, 114–129.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molina, I., Gómez i Prat, J., Salvador, F., Treviño, B., Sulleiro, E., Serre, N., et al. (2014). Randomized trial of posaconazole and benznidazole for chronic Chagas’ disease. New England Journal of Medicine, 370(20), 1899–1908.

    Article  Google Scholar 

  • Morillo, C. A., Marin-Neto, J. A., Avezum, A., Sosa-Estani, S., Rassi, A., Jr., Rosas, F., et al. (2015). Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. New England Journal of Medicine, 373, 1295–1306.

    Article  CAS  Google Scholar 

  • Morillo, C. A., Waskin, H., Sosa-Estani, S., Del Carmen Bangher, M., Cuneo, C., Milesi, R., et al. (2017). Benznidazole and posaconazole in eliminating parasites in asymptomatic T. Cruzi carriers: The STOP-CHAGAS trial. Journal of the American College of Cardiology, 69, 939–947.

    Article  CAS  Google Scholar 

  • Rohloff, P., Rodrigues, C. O., & Docampo, R. (2003). Regulatory volume decrease in Trypanosoma cruzi involves amino acid efflux and changes in intracellular calcium. Molecular and Biochemical Parasitology, 126, 219–230.

    Article  CAS  Google Scholar 

  • Sapcariu, S. C., Kanashova, T., Weindl, D., Ghelfi, J., Dittmar, G., & Hiller, K. (2014). Simultaneous extraction of proteins and metabolites from cells in culture. MethodsX, 1, 74–80.

    Article  Google Scholar 

  • Shah-Simpson, S., Lentini, G., Dumoulin, P. C., & Burleigh, B. A. (2017). Modulation of host central carbon metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes. PLoS Pathogens, 13, e1006747.

    Article  Google Scholar 

  • Stoessel, D., Nowell, C. J., Jones, A. J., Ferrins, L., Ellis, K. M., Riley, J. S., et al. (2016). Metabolomics and lipidomics reveal perturbation of sphingolipid metabolism by a novel anti-trypanosomal 3-(oxazolo[4,5-b]pyridine-2-yl)anilide. Metabolomics, 12, 1–14.

    Article  CAS  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics, 3, 211–221.

    Article  CAS  Google Scholar 

  • Trochine, A., Creek, D. J., Faral-Tello, P., Barrett, M. P., & Robello, C. (2014). Benznidazole biotransformation and multiple targets in Trypanosoma cruzi revealed by metabolomics. PLoS Neglected Tropical Diseases, 8, e2844.

    Article  Google Scholar 

  • van Weelden, S. W., Fast, B., Vogt, A., van der Meer, P., Saas, J., van Hellemond, J. J., et al. (2003). Procyclic Trypanosoma brucei do not use Krebs cycle activity for energy generation. Journal of Biological Chemistry, 278, 12854–12863.

    Article  Google Scholar 

  • Vincent, I. M., Creek, D. J., Burgess, K., Woods, D. J., Burchmore, R. J., & Barrett, M. P. (2012). Untargeted metabolomics reveals a lack of synergy between nifurtimox and eflornithine against Trypanosoma brucei. PLoS Neglected Tropical Diseases, 6, e1618.

    Article  Google Scholar 

  • Wehrens, R., Hageman, J. A., van Eeuwijk, F., Kooke, R., Flood, P. J., Wijnker, E., et al. (2016). Improved batch correction in untargeted MS-based metabolomics. Metabolomics, 12, 88.

    Article  Google Scholar 

  • Wilkinson, S. R., & Kelly, J. M. (2009). Trypanocidal drugs: Mechanisms, resistance and new targets. Expert Reviews in Molecular Medicine, 11, e31.

    Article  Google Scholar 

  • Wilkinson, S. R., Taylor, M. C., Horn, D., Kelly, J. M., & Cheeseman, I. (2008). A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proceedings of the National academy of Sciences of the United States of America, 105, 5022–5027.

    Article  CAS  Google Scholar 

  • Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130.

    Article  CAS  Google Scholar 

  • Zampieri, M., Szappanos, B., Buchieri, M. V., Trauner, A., Piazza, I., Picotti, P., et al. (2018). High-throughput metabolomic analysis predicts mode of action of uncharacterized antimicrobial compounds. Science Translational Medicine, 10, eaal3973.

    Article  Google Scholar 

Download references

Funding

We kindly acknowledge funding from the French Government through the Investissement d’Avenir program (Grant No. ANR-10-AIRT-03) and from the Drugs for Neglected Disease initiative (DNDi) for this project. DNDi received financial support from the following donors: UK Aid, UK, and Reconstruction Credit Institution-Federal Ministry of Education and Research (KfW-BMBF), Germany. The donors had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

KH, JAB, AB, XM, MDL, ADO, JMK, SB, GC, EC, and FB designed, planned and interpreted the study. MDL prepared the cell cultures, collected the samples and supported the experimental setup. EB extracted the samples and prepared them for LC-HRMS and NMR analysis. AB carried out the NMR, XM the proteomics and KH the fingerprinting and lipidomic analysis. JAB processed the data and performed with ADO the statistical analysis of the data. KH lead and all authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to F. Béquet.

Ethics declarations

Conflict of interest

All authors who have contributed to this research have declared no conflict of interests with respect to this article.

Research involving human and/or animal participants

This article does not contain any studies with human and/or animal participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1816 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hennig, K., Abi-Ghanem, J., Bunescu, A. et al. Metabolomics, lipidomics and proteomics profiling of myoblasts infected with Trypanosoma cruzi after treatment with different drugs against Chagas disease. Metabolomics 15, 117 (2019). https://doi.org/10.1007/s11306-019-1583-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-019-1583-5

Keywords

Navigation