Skip to main content
Log in

Differentiation of Ficus deltoidea varieties and chemical marker determination by UHPLC-TOFMS metabolomics for establishing quality control criteria of this popular Malaysian medicinal herb

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Background

Ficus deltoidea Jack (Moraceae) is a plant used in Malaysia for various diseases including as a supplement in diabetes management. Morphology distinction of the 7 main varieties (var. angustifolia, var. bilobata, var. deltoidea, var. intermedia, var. kunstleri, var. motleyana and var. trengganuensis) is challenging due to the extreme leaf heterophylly and unclear varietal boundaries, making it difficult for quality control of F. deltoidea products.

Objective

We aimed to compare the phytochemical composition of 7 varieties growing in different conditions at various geographical locations. We also aimed to establish the quality control markers for the authentication of these varieties.

Methods

We applied untargeted UHPLC-TOFMS metabolomics to discriminate 100 leaf samples of F. deltoidea collected from 6 locations in Malaysia. A genetic analysis on 21 leaf samples was also performed to validate the chemotaxonomy differentiation.

Results

The PCA and HCA analysis revealed the existence of 3 chemotypes based on the differentiation in the flavonoid content. The PLS-DA analysis identified 15 glycosylated flavone markers together with 1 furanocoumarin. These markers were always consistent for the respective varieties, regardless of the geographical locations and growing conditions. The chemotaxonomy differentiation was in agreement with the DNA sequencing. In particular, var. bilobata accession which showed divergent morphology was also differentiated by the chemical fingerprints and genotype.

Conclusion

Chemotype differentiation based on the flavonoid fingerprints along with the proposed markers provide a powerful identification tool to complement morphology and genetic analyses for the quality control of raw materials and products from F. deltoidea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Metabolomics data were deposited into the EMBL-EBI MetaboLights database with identifier Number MTBLS756. The complete dataset can be accessed here https://www.ebi.ac.uk/metabolights/MTBLS756.

References

  • Abad-Garcίa, B., Garmόn-Lobato, S., Berrueta, L. A., Gallo, B., & Vicente, F. (2008). New features on the fragmentation and differentiation of C-glycosidic flavone isomers by positive electrospray ionization and triple quadrupole mass spectrometry. Rapid Communications in Mass Spectrometry, 22, 1834–1842.

    Article  Google Scholar 

  • Abdullah, Z., Hussain, K., Zhari, I., Rasadah, M. A., Mazura, P., Jamaludin, F., & Sahdan, R. (2009). Evaluation of extracts of leaf of three Ficus deltoidea varieties for antioxidant activities and secondary metabolites. Pharmacognosy Research, 1(4), 216–223.

    Google Scholar 

  • Burkill, I. H., & Haniff, M. (1930). Malay village medicine. Garden’s Bulletin, 6(2), 167–332.

    Google Scholar 

  • Corner, E. J. H. (1960). Taxonomix notes on Ficus Linn., Asia and Australasia III. Subgen. Ficus and Sect. Ficus. The Gardens’ Bulletin Singapore, 17(3), 416–441.

    Google Scholar 

  • Corner, E. J. H. (1969). The complex of Ficus deltoidea; a recent invasion of the Sunda Shelf. Philosophical Transactions of the Royal Society of London, 256, 281–317.

    Article  Google Scholar 

  • Desfeux, C., & Leieune, B. (1996). Systematics of Euromediterranean silene (Caryophyllaceae): evidence from a phylogenetic analysis using ITS sequences. Comptes rendus de lʹAcadémie des sciences, Series III, Sciences de la vie, 319(4), 351–358.

    CAS  Google Scholar 

  • Ferreres, F., Silva, B. M., Andrade, P. B., Seabra, R. M., & Ferreira, M. A. (2003). Approach to the study of C -glycosyl flavones by Ion Trap HPLC-PAD-ESI / MS / MS: Application to seeds of Quince (Cydonia oblonga). Phytochemical Analysis, 14(6), 352–359.

    Article  CAS  Google Scholar 

  • Filzmoser, P., & Walczak, B. (2014). What can go wrong at the data normalization step for identification of biomarkers? Journal of Chromatography A, 1362, 194–205.

    Article  CAS  Google Scholar 

  • Funari, C. S., Eugster, P. J., Martel, S., Carrupt, P.-A., Wolfender, J.-L., & Silva, D. H. S. (2012). High resolution ultrahigh pressure liquid chromatography–time-of-flight mass spectrometry dereplication strategy for the metabolite profiling of Brazilian Lippia species. Journal of Chromatography A, 1259, 167–178.

    Article  CAS  Google Scholar 

  • Gaudencio, S. P., & Pereira, F. (2015). Dereplication: racing to speed up the natural products discovery process. Natural Product Reports, 32(6), 779–810.

    Article  CAS  Google Scholar 

  • Haug, K., Salek, R. M., Conesa, P., Hastings, J., de Matos, P., Rijnbeek, M., Mahendraker, T., Williams, M., Neumann, S., Rocca-Serra, P., et al. (2013). MetaboLights - an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Research, 41, D781–D786.

    Article  CAS  Google Scholar 

  • Henke, M. T., & Kelleher, N. L. (2016). Modern mass spectrometry for synthetic biology and structure-based discovery of natural products. Natural Product Reports, 33(8), 942–950.

    Article  CAS  Google Scholar 

  • Hubert, J., Nuzillard, J.-M., & Renault, J.-H. (2017). Dereplication strategies in natural product research: How many tools and methodologies behind the same concept? Phytochemistry Reviews, 16(1), 55–95.

    Article  CAS  Google Scholar 

  • Juan, E. A., Rideout, J. A., & Ragasa, C. Y. (1997). Bioactive furanocoumarin derivatives from Ficus pumila (Moraceae). Philippine Journal of Science, 126, 143–153.

    CAS  Google Scholar 

  • Kochummen, K. M. (1978). Tree flora of Malaya (A manual of foresters). Longman Malaysia Sdn. Bhd., 3, 119–168.

    Google Scholar 

  • Kochummen, K. M. (1998). New species and varieties of Moraceae from Malaysia. Gardens’ Bulletin Singapore, 50(1), 197–219.

    Google Scholar 

  • Li, H. Q., Chen, J. Y., Wang, S., & Xiong, S. Z. (2012). Evaluation of six candidate DNA barcoding loci in Ficus (Moraceae) of China. Molecular Ecology Resources, 12(5), 783–790.

    Article  CAS  Google Scholar 

  • Malaysian Herbal Monograph Committee. (2015). Malaysian herbal monograph 2015 (pp. 193–206). Kuala Lumpur: Institute for Medical Research.

    Google Scholar 

  • Mohd Lip, J., Hisham, D. N., Zaidi, J. A., Musa, Y., Ahmad, A. W., & Sharizan, A. (2009). Isolation and identification of moretenol from Ficus deltoidea leaves. Journal of Tropical Agricultural and Food Science, 37(2), 195–201.

    Google Scholar 

  • Musa, Y. (2005). Variability in morphology and agronomy of emas cotek accessions found in Kelantan and Terengganu. Buletin Teknol Tanaman, 2, 35–48.

    Google Scholar 

  • Nashriyah, M., Nurrul Akmar, R., Nor Zaimah, A. R., Norhaslinda, H., Zanariah, M. N., Nur Fatihah, H. N., Yunus, A. G., & Ali, A. M. (2012). Leaf morphological variations and heterophylly in Ficus deltoidea Jack (Moraceae). Sains Malaysiana, 41(5), 527–538.

    Google Scholar 

  • Nur Fatihah, H. N., Nashriyah, M., Zaimah, A. R. N., Zuhailah, M. N., Norhaslinda, H., Khairil, M., et al. (2012). Morphological phylogenetic analysis of seven varieties of Ficus deltoidea Jack from the Malay Peninsula of Malaysia. PLoS ONE, 7(12), e52441.

    Article  CAS  Google Scholar 

  • Omar, M. H., Mullen, W., & Crozier, A. (2011). Identification of proanthocyanidin dimers and trimers, flavone C-glycosides, and antioxidants in Ficus deltoidea, a Malaysian herbal tea. Journal of Agricultural and Food Chemistry, 59(4), 1363–1369.

    Article  CAS  Google Scholar 

  • Pluskal, T., Castillo, S., Villar-Briones, A., & Oresic, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11(1), 395.

    Article  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.

    Article  CAS  Google Scholar 

  • Theodoridis, G., Gika, H. G., & Wilson, I. D. (2011). Mass spectrometry-based holistic analytical approaches for metabolite profiling in system biology studies. Mass Spectrometry Reviews, 30(5), 884–906.

    CAS  PubMed  Google Scholar 

  • Triba, M. N., Moyec, L., Amathieu, L., Goossens, R., Bouchemal, C., Nahon, N., P., et al (2015). PLS/OPLS models in metabolomics: The impact of permutation of dataset rows on the K-fold cross-validation quality parameters. Molecular BioSystem, 11(1), 13–19.

    Article  CAS  Google Scholar 

  • USDA. (2007). ARS, national genetic resources program, germplasm resources information network—(grin) database. Beltsville: National Germplasm Resources Laboratory.

    Google Scholar 

  • Van Der Kooy, F., Maltese, F., Choi, Y. H., Kim, H. K., & Verpoorte, R. (2009). Quality control of herbal material and phytopharmaceuticals with MS and NMR based metabolic fingerprinting. Planta Medica, 75(7), 763–775.

    Article  Google Scholar 

  • Want, E. J., Wilson, I. D., Gika, H., Theodoridis, G., Plumb, R. S., Shockcor, J., et al. (2010). Global metabolic profiling procedures for urine using UPLC-MS. Nature Protocols, 5, 1005–1018.

    Article  CAS  Google Scholar 

  • Ward, J. H. Jr. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58(301), 236–244.

    Article  Google Scholar 

  • WHO Expert Committee on Specifications for Pharmaceutical Preparations. (2017). Annex 1 WHO guidelines for selecting marker substances of herbal. WHO Technical Report Series, No.1003 (Annex 1), 71–86.

  • Wolfender, J.-L., Marti, G., Thomas, A., & Bertrand, S. (2015). Current approaches and challenges for the metabolite profiling of complex natural extracts. Journal of Chromatography A, 1382, 136–164.

    Article  CAS  Google Scholar 

  • Wolfender, J.-L., Rudaz, S., Choi, Y. H., & Kim, H. K. (2013). Plant metabolomics: From holistic data to relevant biomarkers. Current Medicinal Chemistry, 20(8), 1056–1090.

    CAS  PubMed  Google Scholar 

  • Xia, J., & Wishart, D. S. (2016). Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Current Protocols Bioinformatics, 55, 14.10.1–14.10.91.

    Article  Google Scholar 

Download references

Acknowledgements

AA and JLW acknowledged the Ministry of Health, Malaysia, for funding AA`s postgraduate studies at the Pharmaceutical Science, University of Geneva through the In Service Training and Educational Fellowship for Ph.D. All authors would like to acknowledge the Ministry of Agricultural Malaysia for providing the financial support through NKEA Agriculture EPP #1 (NRGS), Project no. NH0513D018 (File No. 100-RMI/MOA 16/6/2 (2/2013)). NK acknowledged University Teknologi MARA for postgraduate scholarship.

Funding

The funders had no role in study design, data collection, data analysis, manuscript preparation and decision to publish.

Author information

Authors and Affiliations

Authors

Contributions

AA, JLW, NHI, NM and AMA conceived and designed research. NM performed variety identification based on morphology. AA and NK conducted experiments for MS metabolomics study. NA performed experiments for phylogenetic study. AA and JLW analyzed major parts of the multivariate data analysis. AA and NK contributed on the markers identification. AA, JLW, NHI, NA, NM and AMA wrote and contributed to the development of the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Jean-Luc Wolfender.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2347 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzan, A., Kasim, N., Ismail, N.H. et al. Differentiation of Ficus deltoidea varieties and chemical marker determination by UHPLC-TOFMS metabolomics for establishing quality control criteria of this popular Malaysian medicinal herb. Metabolomics 15, 35 (2019). https://doi.org/10.1007/s11306-019-1489-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-019-1489-2

Keywords

Navigation