Skip to main content
Log in

Hyperpolarized 13C lactate as a substrate for in vivo metabolic studies in skeletal muscle

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Resting skeletal muscle has a preference for the oxidation of lipids compared to carbohydrates and a shift towards carbohydrate oxidation is observed with increasing exercise. Lactate is not only an end product in skeletal muscle but also an important metabolic intermediate for mitochondrial oxidation. Recent advances in hyperpolarized MRS allow the measurement of substrate metabolism in vivo in real time. The aim of this study was to investigate the use of hyperpolarized 13C lactate as a substrate for metabolic studies in skeletal muscle in vivo. Carbohydrate metabolism in healthy rat skeletal muscle at rest was studied in different nutritional states using hyperpolarized [1-13C]lactate, a substrate that can be injected at physiological concentrations and leaves other oxidative processes undisturbed. 13C label incorporation from lactate into bicarbonate in fed animals was observed within seconds but was absent after an overnight fast, representing inhibition of the metabolic flux through pyruvate dehydrogenase (PDH). A significant decrease in 13C labeling of alanine was observed comparing the fed and fasted group, and was attributed to a change in cellular alanine concentration and not a decrease in enzymatic flux through alanine transaminase. We conclude that hyperpolarized [1-13C]lactate can be used to study carbohydrate oxidation in resting skeletal muscle at physiological levels. The herein proposed method allows probing simultaneously both PDH activity and variations in alanine tissue concentration, which are associated with metabolic dysfunctions. A simple alteration of the nutritional state demonstrated that the observed pyruvate, alanine, and bicarbonate signals are indeed sensitive markers to probe metabolic changes in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALT:

Alanine transaminase

LDH:

Lactate dehydrogenase

PDH:

Pyruvate dehydrogenase

TCA:

Tricarboxylic acid cycle

MCT:

Monocarboxylate transporter

CA:

Carbonic anhydrase

References

  • Ardenkjaer-Larsen, J. H., Fridlund, B., Gram, A., Hansson, G., Hansson, L., Lerche, M. H., et al. (2003). Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proceedings of the National Academy of Sciences of the United States of America, 100(18), 10158–10163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastiaansen, J. A. M., Cheng, T., Mishkovsky, M., Duarte, J. M. N., Comment, A., & Gruetter, R. (2013). In vivo enzymatic activity of acetylCoA synthetase in skeletal muscle revealed by 13C turnover from hyperpolarized [1-13C]acetate to [1-13C]acetylcarnitine. Biochimica et Biophysica Acta, 1830(8), 4171–4178. doi:10.1016/j.bbagen.2013.03.023.

    Article  CAS  PubMed  Google Scholar 

  • Berger, M., Hagg, S. A., Goodman, M. N., & Ruderman, N. B. (1976). Glucose-metabolism in perfused skeletal-muscle—Effects of starvation, diabetes, fatty-acids, acetoacetate, insulin and exercise on glucose-uptake and disposition. Biochemical Journal, 158(2), 191–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertocci, L. A., Jones, J. G., Malloy, C. R., Victor, R. G., & Thomas, G. D. (1997). Oxidation of lactate and acetate in rat skeletal muscle: Analysis by C-13-nuclear magnetic resonance spectroscopy. Journal of Applied Physiology, 83(1), 32–39.

    CAS  PubMed  Google Scholar 

  • Bertocci, L. A., & Lujan, B. F. (1999). Incorporation and utilization of [3-C-13]lactate and [1,2-C-13]acetate by rat skeletal muscle. Journal of Applied Physiology, 86(6), 2077–2089.

    CAS  PubMed  Google Scholar 

  • Bretthorst, G. L. (1990). Bayesian analysis. I: Parameter estimation using quadrature NMR models. Journal of Magnetic Resonance, 88, 533–551.

  • Brooks, G. A. (1998). Mammalian fuel utilization during sustained exercise. Comparative Biochemistry and Physiology B-Biochemistry and Molecular Biology, 120(1), 89–107. doi:10.1016/S0305-0491(98)00025-X.

    Article  CAS  Google Scholar 

  • Brooks, G. A. (2000). Intra- and extra-cellular lactate shuttles. Medicine and Science in Sports and Exercise, 32(4), 790–799. doi:10.1097/00005768-200004000-00011.

    Article  CAS  PubMed  Google Scholar 

  • Brooks, G. A., & Mercier, J. (1994). Balance of carbohydrate and lipid utilization during exercise: The crossover concept. Journal of Applied Physiology, 76(6), 2253–2261.

    CAS  PubMed  Google Scholar 

  • Chen, A. P., Kurhanewicz, J., Bok, R., Xua, D., Joun, D., Zhang, V., et al. (2008). Feasibility of using hyperpolarized [1-C-13]lactate as a substrate for in vivo metabolic C-13 MRSI studies. Magnetic Resonance Imaging, 26(6), 721–726. doi:10.1016/j.mri.2008.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, T., Mishkovsky, M., Bastiaansen, J. A. M., Ouari, O., Hautle, P., Tordo, P., et al. (2013). Method to minimize and monitor in situ the polarization losses in hyperpolarized biomolecules prior to in vivo MR experiments. NMR in Biomedicine,. doi:10.1002/nbm.2993.

    PubMed Central  Google Scholar 

  • Christop, J., Winand, J., & Hebbelin, M. (1971). Amino acid levels in plasma, liver, muscle, and kidney during and after exercise in fasted and fed rats. American Journal of Physiology, 221(2), 453–457.

    Google Scholar 

  • Comment, A., van den Brandt, B., Uffmann, K., Kurdzesau, F., Jannin, S., Konter, J. A., et al. (2007). Design and performance of a DNP prepolarizer coupled to a rodent MRI scanner. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, 31B(4), 255–269.

    Article  CAS  Google Scholar 

  • Dancis, J., Hutzler, J., & Levitz, M. (1960). Metabolism of the white blood cells in maple-syrup-urine disease. Biochimica et Biophysica Acta, 43(2), 342–343. doi:10.1016/0006-3002(60)90448-0.

    Article  CAS  PubMed  Google Scholar 

  • Day, S. E., Kettunen, M. I., Gallagher, F. A., Hu, D. E., Lerche, M., Wolber, J., et al. (2007). Detecting tumor response to treatment using hyperpolarized C-13 magnetic resonance imaging and spectroscopy. Nature Medicine, 13(11), 1382–1387. doi:10.1038/Nm1650.

    Article  CAS  PubMed  Google Scholar 

  • Duarte, J. M., Cunha, R. A., & Carvalho, R. A. (2007). Different metabolism of glutamatergic and GABAergic compartments in superfused hippocampal slices characterized by nuclear magnetic resonance spectroscopy. Neuroscience, 144(4), 1305–1313. doi:10.1016/j.neuroscience.2006.11.027.

    Article  CAS  PubMed  Google Scholar 

  • Felig, P. (1973). The glucose–alanine cycle. Metabolism-Clinical and Experimental, 22(2), 179–207. doi:10.1016/0026-0495(73)90269-2.

    Article  CAS  PubMed  Google Scholar 

  • Garber, A. J., Karl, I. E., & Kipnis, D. M. (1976). Alanine and glutamine synthesis and release from skeletal-muscle. 2. precursor role of amino-acids in alanine and glutamine synthesis. Journal of Biological Chemistry, 251(3), 836–843.

    CAS  PubMed  Google Scholar 

  • Garland, P. B., Randle, P. J., & Newsholme, E. A. (1964). Regulation of glucose uptake by muscle. 9. Effects of fatty acids + ketone bodies + of alloxan-diabetes + starvation on pyruvate metabolism + on lactate/pyruvate + l-glycerol 3-phosphate/dihydroxyacetone phosphate concentration ratios in rat heart + rat diaphragm muscles. Biochemical Journal, 93(3), 665–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gladden, L. B. (2004). Lactate metabolism: A new paradigm for the third millennium. The Journal of Physiology, 558(1), 5–30. doi:10.1113/jphysiol.2003.058701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gladden, L. B., Crawford, R. E., & Webster, M. J. (1994). Effect of lactate concentration and metabolic-rate on net lactate uptake by canine skeletal-muscle. American Journal of Physiology, 266(4), R1095–R1101.

    CAS  PubMed  Google Scholar 

  • Gobatto, C. A., de Mello, M. A. R., Sibuya, C. Y., de Azevedo, J. R. M., dos Santos, L. A., & Kokubun, E. (2001). Maximal lactate steady state in rats submitted to swimming exercise. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 130(1), 21–27. doi:10.1016/S1095-6433(01)00362-2.

    Article  CAS  Google Scholar 

  • Goodman, M. N., Berger, M., & Ruderman, N. B. (1974). Glucose-metabolism in rat skeletal-muscle at rest effect of starvation, diabetes, ketone-bodies and free fatty-acids. Diabetes, 23(11), 881–888.

    Article  CAS  PubMed  Google Scholar 

  • Goodman, M. N., Dietrich, R., & Luu, P. (1990). Formation of gluconeogenic precursors in rat skeletal muscle during fasted-refed transition. American Journal of Physiology, 259(4 Pt 1), E513–E516.

    CAS  PubMed  Google Scholar 

  • Gruetter, R., & Tkac, I. (2000). Field mapping without reference scan using asymmetric echo-planar techniques. Magnetic Resonance in Medicine, 43(2), 319–323.

    Article  CAS  PubMed  Google Scholar 

  • Houtkooper, R. H., Canto, C., Wanders, R. J., & Auwerx, J. (2010). The secret life of NAD(+): An old metabolite controlling new metabolic signaling pathways. Endocrine Reviews, 31(2), 194–223. doi:10.1210/Er.2009-0026.

    Article  CAS  PubMed  Google Scholar 

  • Hu, S., Chen, A. P., Zierhut, M. L., Bok, R., Yen, Y. F., Schroeder, M. A., et al. (2009). In vivo carbon-13 dynamic MRS and MRSI of normal and fasted rat liver with hyperpolarized C-13-pyruvate. Molecular Imaging and Biology, 11(6), 399–407. doi:10.1007/s11307-009-0218-z.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jucker, B. M., Rennings, A. J. M., Cline, G. W., & Shulman, G. I. (1997). C-13 and P-31 NMR studies on the effects of increased plasma free fatty acids on intramuscular glucose metabolism in the awake rat. Journal of Biological Chemistry, 272(16), 10464–10473.

    Article  CAS  PubMed  Google Scholar 

  • Juel, C. (1991). Muscle lactate transport studied in sarcolemmal giant vesicles. Biochimica et Biophysica Acta, 1065(1), 15–20. doi:10.1016/0005-2736(91)90004-R.

    Article  CAS  PubMed  Google Scholar 

  • Juel, C., & Halestrap, A. P. (1999). Lactate transport in skeletal muscle—Role and regulation of the monocarboxylate transporter. The Journal of Physiology, 517(3), 633–642. doi:10.1111/j.1469-7793.1999.0633s.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karl, I. E., Garber, A. J., & Kipnis, D. M. (1976). Alanine and glutamine synthesis and release from skeletal-muscle. 3. Dietary and hormonal-regulation. Journal of Biological Chemistry, 251(3), 844–850.

    CAS  PubMed  Google Scholar 

  • Kennedy, B. W. C., Kettunen, M. I., Hu, D. E., & Brindle, K. M. (2012). Probing lactate dehydrogenase activity in tumors by measuring hydrogen/deuterium exchange in hyperpolarized L-[1-C-13, U-H-2]lactate. Journal of the American Chemical Society, 134(10), 4969–4977. doi:10.1021/Ja300222e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kettunen, M. I., Hu, D. E., Witney, T. H., McLaughlin, R., Gallagher, F. A., Bohndiek, S. E., et al. (2010). Magnetization transfer measurements of exchange between hyperpolarized [1-C-13]pyruvate and [1-C-13]lactate in a murine lymphoma. Magnetic Resonance in Medicine, 63(4), 872–880. doi:10.1002/Mrm.22276.

    Article  CAS  PubMed  Google Scholar 

  • Macdonald, M., Neufeldt, N., Park, B. N., Berger, M., & Ruderman, N. (1976). Alanine metabolism and gluconeogenesis in rat. American Journal of Physiology, 231(2), 619–626.

    CAS  PubMed  Google Scholar 

  • Mallette, L. E., Exton, J. H., & Park, C. R. (1969). Control of gluconeogenesis from amino acids in perfused rat liver. Journal of Biological Chemistry, 244(20), 5713–5723.

    CAS  Google Scholar 

  • Mayer, D., Yen, Y. F., Josan, S., Park, J. M., Pfefferbaum, A., Hurd, R. E., et al. (2012). Application of hyperpolarized [1-13C]lactate for the in vivo investigation of cardiac metabolism. NMR in Biomedicine, 25(10), 1119–1124. doi:10.1002/Nbm.2778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merritt, M. E., Harrison, C., Sherry, A. D., Malloy, C. R., & Burgess, S. C. (2011). Flux through hepatic pyruvate carboxylase and phosphoenolpyruvate carboxykinase detected by hyperpolarized C-13 magnetic resonance. Proceedings of the National Academy of Sciences of the United States of America, 108(47), 19084–19089. doi:10.1073/pnas.1111247108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merritt, M. E., Harrison, C., Storey, C., Jeffrey, F. M., Sherry, A. D., & Malloy, C. R. (2007). Hyperpolarized 13C allows a direct measure of flux through a single enzyme-catalyzed step by NMR. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19773–19777. doi:10.1073/pnas.0706235104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naressi, A., Couturier, C., Devos, J. M., Janssen, M., Mangeat, C., de Beer, R., et al. (2001). Java-based graphical user interface for the MRUI quantitation package. Magnetic Resonance Materials in Physics, Biology and Medicine, 12(2–3), 141–152.

    Article  CAS  Google Scholar 

  • Odessey, R., Khairall, E. A., & Goldberg, A. L. (1974). Origin and possible significance of alanine production by skeletal-muscle. Journal of Biological Chemistry, 249(23), 7623–7629.

    CAS  PubMed  Google Scholar 

  • Pagliara, A. S., Kipnis, D. M., Karl, I. E., Devivo, D. C., & Feigin, R. D. (1972). Hypoalaninemia—A concomitant of ketotic hypoglycemia. Journal of Clinical Investigation, 51(6), 1440–1449. doi:10.1172/Jci106940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole, R. C., & Halestrap, A. P. (1993). Transport of lactate and other monocarboxylates across mammalian plasma-membranes. American Journal of Physiology, 264(4), C761–C782.

    CAS  PubMed  Google Scholar 

  • Roth, D. A. (1991). The sarcolemmal lactate transporter: Transmembrane determinants of lactate flux. Medicine and Science in Sports and Exercise, 23(8), 925–934.

    Article  CAS  PubMed  Google Scholar 

  • Ruderman, N. B., & Berger, M. (1974). Formation of glutamine and alanine in skeletal-muscle. Journal of Biological Chemistry, 249(17), 5500–5506.

    CAS  PubMed  Google Scholar 

  • Schroeder, M. A., Cochlin, L. E., Heather, L. C., Clarke, K., Radda, G. K., Tyler, D. J., et al. (2008). In vivo assessment of pyruvate dehydrogenase flux in the heart using hyperpolarized carbon-13 magnetic resonance. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 12051–12056. doi:10.1073/pnas.0805953105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vettor, R., Lombardi, A. M., Fabris, R., Pagano, C., Cusin, I., RohnerJeanrenaud, F., et al. (1997). Lactate infusion in anesthetized rats produces insulin resistance in heart and skeletal muscles. Metabolism-Clinical and Experimental, 46(6), 684–690. doi:10.1016/S0026-0495(97)90014-7.

    Article  CAS  PubMed  Google Scholar 

  • Watt, P. W., Maclennan, P. A., Hundal, H. S., Kuret, C. M., & Rennie, M. J. (1988). L(+)-lactate transport in perfused rat skeletal-muscle: Kinetic characteristics and sensitivity to ph and transport inhibitors. Biochimica et Biophysica Acta, 944(2), 213–222. doi:10.1016/0005-2736(88)90434-8.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, Y., Holloway, G. P., Ljubicic, V., Hatta, H., Spriet, L. L., Hood, D. A., et al. (2007). Negligible direct lactate oxidation in subsarcolemmal and intermyofibrillar mitochondria obtained from red and white rat skeletal muscle. The Journal of Physiology, 582(3), 1317–1335. doi:10.1113/jphysiol.2007.135095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Tian Cheng and Andrea Capozzi for their suggestions and improvements on the lactate recipe and Jacquelina Romero, Laure Bardouillet and Mario Lepore for veterinary support.

Conflict of interest

The authors declare no conflicts of interest.

Animal studies

All institutional and national guidelines for the care and use of laboratory animals were followed.

Funding

This work was supported by the Swiss National Science Foundation (Grant PP00P2_133562 and 31003AB_131087), the Centre d’Imagerie BioMédicale (CIBM) of the UNIL, UNIGE, HUG, CHUV, EPFL, and the Leenaards and Jeantet Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica A. M. Bastiaansen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 673 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastiaansen, J.A.M., Yoshihara, H.A.I., Takado, Y. et al. Hyperpolarized 13C lactate as a substrate for in vivo metabolic studies in skeletal muscle. Metabolomics 10, 986–994 (2014). https://doi.org/10.1007/s11306-014-0630-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0630-5

Keywords

Navigation