Skip to main content

Advertisement

Log in

Effects of LPS on P2X3 receptors of trigeminal sensory neurons and macrophages from mice expressing the R192Q Cacna1a gene mutation of familial hemiplegic migraine-1

  • Brief Communication
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

A knockin (KI) mouse model with the R192Q missense mutation in the Cacna1a gene commonly detected in familial hemiplegic migraine was used to study whether trigeminal ganglia showed a basal inflammatory profile that could be further enhanced by the lipopolysaccharide (LPS) toxin. Adenosine-5′-triphosphate (ATP)-gated purinergic ionotropic receptor 3 (P2X3) currents expressed by the large majority of trigeminal sensory neurons were taken as functional readout. Cultured R192Q KI trigeminal ganglia showed higher number of active macrophages, basal release of tumor necrosis factor alpha (TNFα), and larger P2X3 receptor currents with respect to wild type (WT) cells. After 5 h application of LPS in vitro, both WT and R192Q KI cultures demonstrated significant increase in macrophage activation, very large rise in TNFα mRNA content, and ambient protein levels together with fall in TNFα precursor, suggesting potent release of this inflammatory mediator. Notwithstanding the unchanged expression of P2X3 receptor protein in WT or R192Q KI cultures, LPS evoked a large rise in WT neuronal currents that recovered faster from desensitization. Basal R192Q KI currents were larger than WT ones and could not be further augmented by LPS. These data suggest that KI cultures had a basal neuroinflammatory profile that might facilitate the release of endogenous mediators (including ATP) to activate constitutively hyperfunctional P2X3 receptors and amplify nociceptive signaling by trigeminal sensory neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Abbreviations

α,β-meATP:

α,β-methyleneadenosine 5′-triphosphate

ATP:

Adenosine-5′-triphosphate

AU:

Arbitrary unit

BCA:

Bicinchoninic acid

CaV2.1:

Voltage-activated calcium channel 2.1

DRG:

Dorsal root ganglion

FHM-1:

Familial hemiplegic migraine type 1

Iba1:

Ionized calcium binding adaptor molecule 1

KI:

Knockin

LPS:

Lipopolysaccharide

P2X3:

Purinergic ionotropic receptor 3

PCR:

Polymerase chain reaction

SEM:

Standard error of the mean

TNFα:

Tumor necrosis factor alpha

WT:

Wild type

References

  1. Tfelt-Hansen PC, Koehler PJ (2011) One hundred years of migraine research: major clinical and scientific observations from 1910 to 2010. Headache 51:752–778

    Article  PubMed  Google Scholar 

  2. Giniatullin R, Nistri A, Fabbretti E (2008) Molecular mechanisms of sensitization of pain-transducing P2X3 receptors by the migraine mediators CGRP and NGF. Mol Neurobiol 37:83–90

    Article  PubMed  CAS  Google Scholar 

  3. Ho TW, Edvinsson L, Goadsby PJ (2010) CGRP and its receptors provide new insights into migraine pathophysiology. Nat Rev Neurol 6:573–582

    Article  PubMed  CAS  Google Scholar 

  4. Simonetti M, Fabbro A, D’Arco M, Zweyer M, Nistri A, Giniatullin R, Fabbretti E (2006) Comparison of P2X and TRPV1 receptors in ganglia or primary culture of trigeminal neurons and their modulation by NGF or serotonin. Mol Pain 2:11

    Article  PubMed  Google Scholar 

  5. Ambalavanar R, Dessem D (2009) Emerging peripheral receptor targets for deep-tissue craniofacial pain therapies. J Dent Res 88:201–211

    Article  PubMed  CAS  Google Scholar 

  6. Burnstock G, Krügel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95:229–274

    Article  PubMed  CAS  Google Scholar 

  7. van den Maagdenberg AM, Pietrobon D, Pizzorusso T, Kaja S, Broos LA, Cesetti T, van de Ven RC, Tottene A, van der Kaa J, Plomp JJ, Frants RR, Ferrari MD (2004) A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 41:701–710

    Article  PubMed  Google Scholar 

  8. Nair A, Simonetti M, Birsa N, Ferrari MD, van den Maagdenberg AM, Giniatullin R, Nistri A, Fabbretti E (2010) Familial hemiplegic migraine CaV2.1 channel mutation R192Q enhances ATP-gated P2X3 receptor activity of mouse sensory ganglion neurons mediating trigeminal pain. Mol Pain 6:48

    Article  PubMed  Google Scholar 

  9. Moskowitz MA (1984) The neurobiology of vascular head pain. Ann Neurol 16:157–168

    Article  PubMed  CAS  Google Scholar 

  10. Reuter U, Bolay H, Jansen-Olesen I, Chiarugi A, Sanchez del Rio M, Letourneau R, Theoharides TC, Waeber C, Moskowitz MA (2001) Delayed inflammation in rat meninges: implications for migraine pathophysiology. Brain 124:2490–2502

    Article  PubMed  CAS  Google Scholar 

  11. Moskowitz MA, Buzzi MG (2010) Migraine general aspects. Handb Clin Neurol 97:253–266

    Article  PubMed  Google Scholar 

  12. Lund S, Christensen KV, Hedtjärn M, Mortensen AL, Hagberg H, Falsig J, Hasseldam H, Schrattenholz A, Pörzgen P, Leist M (2006) The dynamics of the LPS triggered inflammatory response of murine microglia under different culture and in vivo conditions. J Neuroimmunol 180:71–87

    Article  PubMed  CAS  Google Scholar 

  13. Villa G, Ceruti S, Zanardelli M, Magni G, Jasmin L, Ohara PT, Abbracchio MP (2010) Temporomandibular joint inflammation activates glial and immune cells in both the trigeminal ganglia and in the spinal trigeminal nucleus. Mol Pain 6:89

    Article  PubMed  Google Scholar 

  14. Li Y, Ji A, Weihe E, Schafer MKH (2004) Cell-specific expression and lipopolysaccharide-induced regulation of tumor necrosis factor α (TNFα) and TNF receptors in rat dorsal root ganglion. J Neurosci 24:9623–9631

    Article  PubMed  CAS  Google Scholar 

  15. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong J-S, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462

    Article  PubMed  Google Scholar 

  16. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  PubMed  CAS  Google Scholar 

  17. Ochoa-Cortes F, Ramos-Lomas T, Miranda-Morales M, Spreadbury I, Ibeakanma C, Barajas-Lopez C, Vanner S (2010) Bacterial cell products signal to mouse colonic nociceptive dorsal root ganglia neurons. Am J Physiol Gastrointest Liver Physiol 299:G723–G732

    Article  PubMed  CAS  Google Scholar 

  18. Burnstock G (2009) Purinergic receptors and pain. Curr Pharm 15:1717–1735

    Article  CAS  Google Scholar 

  19. Sokolova E, Skorinkin A, Moiseev I, Agrachev A, Nistri A, Giniatullin R (2006) Experimental and modeling studies of desensitization of P2X3 receptors. Mol Pharmacol 70:373–382

    PubMed  CAS  Google Scholar 

  20. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29

    Article  PubMed  CAS  Google Scholar 

  21. Ren K, Dubner R (2010) Interactions between the immune and nervous systems in pain. Nat Med 16:1267–1276

    Article  PubMed  CAS  Google Scholar 

  22. David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12:388–399

    Article  PubMed  CAS  Google Scholar 

  23. Zhang X, Chen Y, Wang C, Huang LYM (2007) Neuronal somatic ATP release triggers neuron–satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci USA 104:9864–9869

    Article  PubMed  CAS  Google Scholar 

  24. Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S (1996) A novel gene Iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224:855–862

    Article  PubMed  CAS  Google Scholar 

  25. Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57:1–9

    Article  PubMed  CAS  Google Scholar 

  26. Seifert S, Pannell M, Uckert W, Färber K, Kettenmann H (2011) Transmitter- and hormone-activated Ca2+ responses in adult microglia/brain macrophages in situ recorded after viral transduction of a recombinant Ca2+ sensor. Cell Calcium 49:365–375

    Article  PubMed  CAS  Google Scholar 

  27. Chiao CW, Tostes RC, Webb RC (2008) P2X7 receptor activation amplifies lipopolysaccharide-induced vascular hyporeactivity via interleukin-1 beta release. J Pharmacol Exp Ther 326:864–870

    Article  PubMed  CAS  Google Scholar 

  28. Clark AK, Staniland AA, Marchand F, Kaan TK, McMahon SB, Malcangio M (2010) P2X7-dependent release of interleukin-1beta and nociception in the spinal cord following lipopolysaccharide. J Neurosci 30:573–582

    Article  PubMed  CAS  Google Scholar 

  29. Leung L, Cahill CM (2010) TNF-α and neuropathic pain—a review. J Neuroinflamm 7:27

    Article  Google Scholar 

  30. Watkins LR, Maier SF (2003) Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov 2:973–985

    Article  PubMed  CAS  Google Scholar 

  31. Gu Y, Chen Y, Zhang X, Li GW, Wang C, Huang LY (2010) Neuronal soma-satellite glial cell interactions in sensory ganglia and the participation of purinergic receptors. Neuron Glia Biol 6:53–62

    Article  PubMed  Google Scholar 

  32. Kucher BM, Neary JT (2005) Bi-functional effects of ATP/P2 receptor activation on tumor necrosis factor-alpha release in lipopolysaccharide-stimulated astrocytes. J Neurochem 92:525–535

    Article  PubMed  CAS  Google Scholar 

  33. Hide I, Tanaka M, Inoue A, Nakajima K, Kohsaka S, Inoue K, Nakata Y (2000) Extracellular ATP triggers tumor necrosis factor-α release from rat microglia. J Neurochem 75:965–972

    Article  PubMed  CAS  Google Scholar 

  34. Hanisch U (2002) Microglia as a source and target of cytokines. Glia 40:140–155

    Article  PubMed  Google Scholar 

  35. Ceruti S, Villa G, Fumagalli M, Colombo L, Magni G, Zanardelli M, Fabbretti E, Verderio C, van den Maagdenberg AMJM, Nistri A, Abbracchio MP (2011) Calcitonin gene-related peptide-mediated enhancement of purinergic neuron/glia communication by the algogenic factor bradykinin in mouse trigeminal ganglia from wild-type and R192Q CaV2.1 knock-in mice: implications for basic mechanisms of migraine pain. J Neurosci 31:3638–3649

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Telethon Foundation (grant GGP10082 to AN), the Cariplo Foundation (2011-0505 to AN), and by ARRS grant J3-2376-1540 (to EF) and a grant from the Centre for Medical Systems Biology within the framework of the Netherlands Genomics Initiative/Netherlands Organization for Scientific Research (NWO).

Conflict of interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Nistri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franceschini, A., Hullugundi, S.K., van den Maagdenberg, A.M.J.M. et al. Effects of LPS on P2X3 receptors of trigeminal sensory neurons and macrophages from mice expressing the R192Q Cacna1a gene mutation of familial hemiplegic migraine-1. Purinergic Signalling 9, 7–13 (2013). https://doi.org/10.1007/s11302-012-9328-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-012-9328-1

Keywords

Navigation