Skip to main content
Log in

SOA Based BB84 Protocol for Enhancing Quantum Key Distribution in Cloud Environment

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Quantum Key Distribution (QKD) systems are thought to be the best method for securing data in cloud storage and boosting security and privacy. Due to the increasing use of cloud services, ensuring the confidentiality of stored data in cloud storage, data exchange, and key sharing used to encrypt data has become a major concern in recent years. The error key may occur during key generation. Through this error key, Eve can easily know the knowledge of the shared key. Enhanced error correction algorithms are utilized to discover and eliminate mistake bits while transmission, ensuring that both keys are equal and producing their shared error-free secret key. Hence, this study improves a BB84 protocol by improving its bit size at the compatibility level using the Sailfish Optimization Algorithm (SOA), and together with the transmitter, as well as the receiver, create a raw key in the next state. QKD is developed from improved BB84 protocol and encrypts data using a hybrid AES-RC4 encryption algorithm. The improved BB84 protocol generates the quantum key distribution, which encrypts data using a hybrid encryption algorithm. Here, error correction is done through the multi-objective function which is optimized using the Sailfish optimization technique, resulting in outcomes through adding either estimate mistake or a best key combination. After encryption, if the data is uploaded to the cloud, only the authorized user can decode the data. Moreover, in a Python environment, the proposed method is implemented, and the proposed model's accuracy rate is 97 per cent, with a 3 per cent error rate and 59 s for key generation time. As a result, the proposed SOA-based QKD swift key generation system outperforms existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

If all data, models, and code generated or used during the study appear in the submitted article and no data needs to be specifically requested.

Code Availability

No code is available for this manuscript.

References

  1. Hasani, A., Mahdi, H., & Naimee, K. A. A. (2019). Impact security enhancement in chaotic quantum cryptography. Optics & Laser Technology, 119, 105575.

    Article  Google Scholar 

  2. Tchoffo, M., & Tene, A. G. (2020). Privacy amplification of entanglement parametric-down conversion based quantum key distribution via quantum logistic map for photon bases choice. Chaos, Solitons & Fractals, 140, 110110.

    Article  MathSciNet  Google Scholar 

  3. Gyongyosi, L., & Imre, S. (2018). Multiple access multicarrier continuous-variable quantum key distribution. Chaos, Solitons & Fractals, 114, 491–505.

    Article  MathSciNet  MATH  Google Scholar 

  4. Almazrooie, M., Samsudin, A., Gutub, A.A.-A., Salleh, M. S., Omar, M. A., & Hassan, S. A. (2020). Integrity verification for digital Holy Quran verses using cryptographic hash function and compression. Journal of King Saud University-Computer and Information Sciences, 32(1), 24–34.

    Article  Google Scholar 

  5. Liu, Z., & Seo, H. (2018). IoT-NUMS: evaluating NUMS elliptic curve cryptography for IoT platforms. IEEE Transactions on Information Forensics and Security., 14(3), 720–729.

    Article  Google Scholar 

  6. Alshaer, N., Nasr, M. E., & Ismail, T. (2021). Hybrid MPPM-BB84 quantum key distribution over FSO channel considering atmospheric turbulence and pointing errors. IEEE Photonics Journal, 13(6), 1–9.

    Article  Google Scholar 

  7. Bashir, M. S., & Muhammad, S. S. (2019). Time synchronization in photon-limited deep space optical communications. IEEE Transactions on Aerospace and Electronic Systems, 56(1), 30–40.

    Article  Google Scholar 

  8. Wang, X., Wang, Y., Yao, Z., Chen, X., Zhu, X., & Zhang, X. (2020). Timing offset estimation of ppm signal for deep space optical communications. Signal and information processing, networking and computers (pp. 444–452). Springer.

    Chapter  Google Scholar 

  9. Cao, Y., Zhao, Y., Li, J., Lin, R., Zhang, J., & Chen, J. (2021). Hybrid Trusted/untrusted relay-based quantum key distribution over optical backbone networks. IEEE Journal on Selected Areas in Communications, 39(9), 2701–2718.

    Article  Google Scholar 

  10. Abualigah, L., Diabat, A., & Elaziz, M. A. (2021). Intelligent workflow scheduling for Big Data applications in IoT cloud computing environments. Cluster Computing, 24(4), 2957–2976.

    Article  Google Scholar 

  11. Abualigah, L., & Diabat, A. (2021). A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments. Cluster Computing, 24(1), 205–223.

    Article  Google Scholar 

  12. Trinh, P. V., Pham, T. V., Dang, N. T., Nguyen, H. V., Ng, S. X., & Pham, A. T. (2018). Design and security analysis of quantum key distribution protocol over free-space optics using dual-threshold direct-detection receiver. IEEE Access, 6, 4159–4175.

    Article  Google Scholar 

  13. Abualigah, L., Diabat, A., Sumari, P., & Gandomi, A. H. (2021). Applications, deployments, and integration of internet of drones (iod): A review. IEEE Sensors Journal.

  14. Chen, D., Wei, L., Liang, C. Y., Qing, P., & Lei, S. (2018). Reference-frame-independent measurement-device-independent quantum key distribution using hybrid logical basis. Quantum Information Processing, 17(10), 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  15. Yan, X.-Y., Gong, L.-H., Chen, H.-Y., & Zhou, N.-R. (2018). New quantum key distribution scheme based on random hybrid quantum channel with EPR pairs and GHZ states. International Journal of Theoretical Physics, 57(9), 2648–2656.

    Article  MATH  Google Scholar 

  16. Choe, J. S., Ko, H., Choi, B. S., Kim, K. J., & Youn, C. J. (2018). Planar lightwave circuit based integrated 1$\times $4 polarization beam splitter module for free-space BB84 quantum key distribution. IEEE Photonics Journal, 10(1), 1–8.

    Article  Google Scholar 

  17. Lai, H., Luo, M., Zhang, J., Pieprzyk, J., Pan, L., & Orgun, M. A. (2018). A large-alphabet three-party quantum key distribution protocol based on orbital and spin angular momenta hybrid entanglement. Quantum Information Processing, 17(7), 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhou, Lu., Wang, Q., Sun, X., Kulicki, P., & Castiglione, A. (2018). Quantum technique for access control in cloud computing II: Encryption and key distribution. Journal of Network and Computer Applications, 103, 178–184.

    Article  Google Scholar 

  19. Geihs, Matthias, Nikiforov, O., Demirel, D., Sauer, A., Butin, D., Günther, F., Alber, G., Walther, T., & Buchmann, J. (2019). The status of quantum-key-distribution-based long-term secure internet communication. IEEE Transactions on Sustainable Computing, 6(1), 19–29.

    Article  Google Scholar 

  20. Ma, Y., Yi, L., Wei, G., & Zhao, X. (2019). Performance optimization of decoy-state BB84-and MDI-QKD protocol and their key integrating application strategy for power dispatching. Optical Fiber Technology, 52, 101944.

    Article  Google Scholar 

  21. Xu, P., Cumanan, K., Ding, Z., Dai, X., & Leung, K. K. (2016). Group secret key generation in wireless networks: algorithms and rate optimization. IEEE Transactions on Information Forensics and Security, 11(8), 1831–1846.

    Article  Google Scholar 

  22. Dey, S., & Hossain, A. (2019). Session-key establishment and authentication in a smart home network using public key cryptography. IEEE Sensors Letters, 3(4), 1–4.

    Article  Google Scholar 

  23. He, D., & Zeadally, S. (2014). An analysis of RFID authentication schemes for internet of things in healthcare environment using elliptic curve cryptography. IEEE internet of things journal, 2(1), 72–83.

    Article  Google Scholar 

  24. Furqan, H.M., Hamamreh, J.M. and Arslan, H. (2020) New physical layer key generation dimensions: subcarrier indices/positions-based key generation. IEEE Communications Letters.

  25. Almajed, H. N., & Almogren, A. S. (2019). SE-ENC: A secure and efficient encoding scheme using elliptic curve cryptography. IEEE Access, 7, 175865–175878.

    Article  Google Scholar 

  26. Abualigah, L., Elaziz, M. A., Khodadadi, N., Forestiero, A., Jia, H., & Gandomi, A. H. (2022). Aquila optimizer based PSO swarm intelligence for IoT task scheduling application in cloud computing. In Integrating Meta-Heuristics and Machine Learning for Real-World Optimization Problems (pp. 481-497). Cham: Springer

  27. Otair, M., Alhmoud, A., Jia, H., Altalhi, M., Hussein, A. M., & Abualigah, L. (2022). Optimized task scheduling in cloud computing using improved multi-verse optimizer. Cluster Computing, 1–12.

  28. Attiya, I., Abd Elaziz, M., Abualigah, L., Nguyen, T. N., & Abd El-Latif, A. A. (2022). An improved hybrid swarm intelligence for scheduling iot application tasks in the cloud. IEEE Transactions on Industrial Informatics.

  29. Abualigah, L., & Alkhrabsheh, M. (2022). Amended hybrid multi-verse optimizer with genetic algorithm for solving task scheduling problem in cloud computing. The Journal of Supercomputing, 78(1), 740–765.

    Article  Google Scholar 

  30. Sundar, K., Sasikumar, S., & Jayakumar, C. (2022). Enhanced cloud security model using QKDP (ECSM-QKDP) for advanced data security over cloud. Quantum Information Processing, 21(3), 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  31. Shamshad, S., Riaz, F., Riaz, R., Rizvi, S. S., & Abdulla, S. (2022). An enhanced architecture to resolve public-key cryptographic issues in the internet of things (IoT), Employing quantum computing supremacy. Sensors, 22(21), 8151.

    Article  Google Scholar 

  32. Guo, Y., Peng, Q., Liao, Q., & Wang, Y. (2021). Trans-media continuous-variable quantum key distribution via untrusted entanglement source. IEEE Photonics Journal, 13(2), 1–12.

    Google Scholar 

  33. Yang, S.-S., Bai, Z.-L., Wang, X.-Y., & Li, Y.-M. (2017). FPGA-based implementation of size-adaptive privacy amplification in quantum key distribution. IEEE Photonics Journal, 9(6), 1–8.

    Google Scholar 

  34. Biswas, A., Banerji, A., Chandravanshi, P., Kumar, R., & Singh, R. P. (2021). Experimental side channel analysis of BB84 QKD source. IEEE Journal of Quantum Electronics, 57(6), 1–7.

    Article  Google Scholar 

  35. Harun, N. Z., Zukarnain, Z. A., Hanapi, Z. M., & Ahmad, I. (2018). Evaluation of parameters effect in multiphoton quantum key distribution over fiber optic. IEEE Access, 6, 47699–47706.

    Article  Google Scholar 

  36. Ghosh, K. K., Ahmed, S., Singh, P. K., Geem, Z. W., & Sarkar, R. (2020). Improved binary sailfish optimizer based on adaptive β-hill climbing for feature selection. IEEE Access, 8, 83548–83560.

    Article  Google Scholar 

  37. Equihua, C., Anides, E., García, J. L., Vázquez, E., Sánchez, G., Avalos, J. G., & Sánchez, G. (2021). A low-cost and highly compact FPGA-based encryption/decryption architecture for AES algorithm. IEEE Latin America Transactions, 19(9), 1443–1450.

    Article  Google Scholar 

  38. Saha, R. G., Kumar, G., Kim, T.-H., & Buchanan, W. J. (2019). MRC4: A modified RC4 algorithm using symmetric random function generator for improved cryptographic features. IEEE Access, 7, 172045–172054.

    Article  Google Scholar 

  39. Fake news content detection dataset. https://www.kaggle.com/datasets/anmolkumar/fake-news-content-detection?select=test.csv

  40. Borges, F., Reis, P. R., & Pereira, D. (2020). A comparison of security and its performance for key agreements in post-quantum cryptography. IEEE Access, 8, 142413–142422.

    Article  Google Scholar 

  41. Shang, Tao, Tang, Y., Chen, R., & Liu, J. (2020). Full quantum one-way function for quantum cryptography. Quantum Engineering, 2(1), e32.

    Article  Google Scholar 

  42. Kwek, L. C., Cao, L., Luo, W., Wang, Y., Sun, S., Wang, X., & Liu, A. Q. (2021). Chip-based quantum key distribution. AAPPS Bulletin, 31(1), 1–8.

    Article  Google Scholar 

  43. Khari, M., Garg, A. K., Gandomi, A. H., Gupta, R., Patan, R., & Balusamy, B. (2019). Securing data in Internet of Things (IoT) using cryptography and steganography techniques.IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(1), 73–80.

  44. Sehgal, S. K., & Gupta, R. (2021, December). Quantum Cryptography and Quantum Key. In 2021 International Conference on Industrial Electronics Research and Applications (ICIERA) (pp. 1–5). IEEE.

Download references

Funding

There is no funding provided to prepare the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shravan Kumar Sehgal.

Ethics declarations

Conflict of interest

The process of writing and the content of the article does not give grounds for raising the issue of a conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informal Consent

Informed consent was obtained from all individual participants included in the study.

Consent to Participate

I have read and I understand the provided information.

Consent to Publish

This article does not contain any Image or video to get permission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sehgal, S.K., Gupta, R. SOA Based BB84 Protocol for Enhancing Quantum Key Distribution in Cloud Environment. Wireless Pers Commun 130, 1759–1793 (2023). https://doi.org/10.1007/s11277-023-10354-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10354-y

Keywords

Navigation