Skip to main content
Log in

Zero-Forcing Spatial Interweave with Greedy Scheduling

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

We propose a method that allows opportunistic shared channel utilization in multi-user multiple-input multiple-output systems, without causing any interference towards the primary system. It is shown that with appropriate exploitation of demodulation pilot signaling, the opportunistic system can quantify all the necessary information in order to guarantee complete interference mitigation towards the primary system. Opportunistic signal space utilization is based on the assumption of reciprocal zero-forcing transmitter and receiver design in the primary system and use of time division duplexing. Linear beamforming is coupled with greedy scheduling for efficient exploitation of multi-user diversity in both the primary system and the cognitive systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Amir, M., El-Keyi, A., & Nafie, M. (2010). Opportunistic interference alignment for multiuser cognitive radio. In Proceedings of the IEEE information theory workshop (pp. 1–5).

  2. Bengtsson, M., & Ottersten, B. (2001). Optimal and suboptimal transmit beamforming. In L. C. Godara (Ed.), Handbook of antennas in wireless communications. Boca Raton, FL: CRC Press.

    Google Scholar 

  3. Cadambe, V. R., & Jafar, S. A. (2008). Interference alignment and degrees of freedom of the \(k\)-user interference channel. IEEE Transactions on Information Theory, 54(8), 3425–3441.

    Article  MathSciNet  Google Scholar 

  4. Du, H., Ratnarajah, T., Pesavento, M., & Papadias, C. (2012). Joint transceiver beamforming in MIMO cognitive radio network via second-order cone programming. IEEE Transactions on Signal Processing, 60(2), 781–792.

    Google Scholar 

  5. Gesbert, D., Hanly, S., Huang, H., Shitz, S. S., Simeone, O., & Yu, W. (2010). Multi-cell MIMO cooperative networks: A new look at interference. IEEE Journal on Selected Areas in Communications, 28(9), 1380–1408.

    Article  Google Scholar 

  6. Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.

    Article  Google Scholar 

  7. Jafar, S. A., & Fakhereddin, M. J. (2007). Degrees of freedom for the MIMO interference channel. IEEE Transactions on Information Theory, 53(7), 2637–2642.

    Article  MathSciNet  Google Scholar 

  8. Jung, B. C., & Shin, W. Y. (2011). Opportunistic interference alignment for interference-limited cellular TDD uplink. IEEE Communications Letters, 15(2), 148–150.

    Article  Google Scholar 

  9. Komulainen, P., Tölli, A., Latva-aho, M., & Juntti, M. (2009). Downlink assisted uplink zero forcing for TDD multiuser MIMO systems. EURASIP Journal on Wireless Communications and Networking, 2009:1–11.

  10. Komulainen, P., Tölli, A., & Juntti, M. (2010). CSI signaling for decentralized coordinated beamforming in TDD multi-cell MIMO systems. In Proceedings of the Annual Asilomar Conference on Signals, Systems and Computers.

  11. Mitola, J., & Maguire, J. G. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications Magazine, 6(4), 13–18.

    Article  Google Scholar 

  12. Negro, F., Ghauri, I., & Slock, D. T. M. (2009). Transmission techniques and channel estimation for spatial interweave TDD cognitive radio systems . In Proceedings of the annual Asilomar conference on signals, systems and computers (pp. 523–527).

  13. Negro, F., Ghauri, I., & Slock, D. (2010). Beamforming for the underlay cognitive MISO interference channel via ul-dl duality. In: 2010 Proceedings of the fifth international conference on cognitive radio oriented wireless networks communications (CROWNCOM) (pp 1–5).

  14. Peel, C. B., Hochwald, B. M., & Swindlehurst, A. L. (2005). A vector-perturbation technique for near-capacity multiantenna multiuser communication-part I: Channel inversion and regularization. IEEE Transactions on Communications, 53(1), 195–202.

    Article  Google Scholar 

  15. Perlaza, S., Fawaz, N., Lasaulce, S., & Debbah, M. (2010). From spectrum pooling to space pooling: Opportunistic interference alignment in MIMO cognitive networks. IEEE Transactions on Signal Processing, 58(7), 3728–3741.

    Article  MathSciNet  Google Scholar 

  16. Schubert, M., & Boche, H. (2004). Solution of the multiuser downlink beamforming problem with individual SINR constraints. IEEE Transactions on Vehicular Technology, 53(1), 18–28.

    Article  Google Scholar 

  17. Shen, C., & Fitz, M. (2011). Opportunistic spatial orthogonalization and its application in fading cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 5(1), 182–189.

    Article  Google Scholar 

  18. Shi, S., Schubert, M., & Boche, H. (2008) Per-antenna power constrained rate optimization for multiuser MIMO systems. In International ITG workshop on smart antennas, 2008. WSA 2008 (pp 270–277).

  19. Shi, S., Schubert, M., & Boche, H. (2008). Rate optimization for multiuser mimo systems with linear processing. IEEE Transactions on Signal Processing, 56(8), 4020–4030.

    Google Scholar 

  20. Suh, C., & Tse, D. (2008). Interference alignment for cellular networks. In Proceedings of the annual allerton conference on communications, control, and computing (pp. 1037–1044).

  21. Tajer, A., Prasad, N., & Wang, X. (2010). Beamforming and rate allocation in MISO cognitive radio networks. IEEE Transactions on Signal Processing, 58(1), 362–377.

    Google Scholar 

  22. Tölli, A., Codreanu, M., & Juntti, M. (2008). Cooperative MIMO-OFDM cellular system with soft handover between distributed base station antennas. IEEE Transactions on Wireless Communications, 7(4), 1428–1440.

    Article  Google Scholar 

  23. Tölli, A., Pennanen, H., & Komulainen, P. (2011). Decentralized minimum power multi-cell beamforming with limited backhaul signaling. IEEE Transactions on Wireless Communications, 10(2), 570–580.

    Article  Google Scholar 

  24. Visotsky, E., & Madhow, U. (1999). Optimum beamforming using transmit antenna arrays. In Proceedings of the IEEE vehicular technology conference (Vol, 1, pp. 851–856). Houston, TX.

  25. Wiesel, A., Eldar, Y. C., & Shamai, S. (2006). Linear precoding via conic optimization for fixed MIMO receivers. IEEE Transactions on Signal Processing, 54(1), 161–176.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Finnish Funding Agency for Technology and Innovation (Tekes), Elektrobit, Nokia, Nokia Siemens Networks (NSN), Uninord, Xilinx and Renesas Mobile Europe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarkko Kaleva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaleva, J., Komulainen, P., Juntti, M. et al. Zero-Forcing Spatial Interweave with Greedy Scheduling. Wireless Pers Commun 72, 1649–1662 (2013). https://doi.org/10.1007/s11277-013-1126-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1126-8

Keywords

Navigation