Skip to main content
Log in

Prospects of integrating algae technologies into landfill leachate treatment

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Landfilling of municipal waste, an environmental challenge worldwide, results in the continuous formation of significant amounts of leachate, which poses a severe contamination threat to ground and surface water resources. Landfill leachate (LL) is generated by rainwater percolating through disposed waste materials and must be treated effectively before safe discharge into the environment. LL contains numerous pollutants and toxic substances, such as dissolved organic matter, inorganic chemicals, heavy metals, and anthropogenic organic compounds. Currently, LL treatment is carried out by a combination of physical, chemical, and microbial technologies. Microalgae are now viewed as a promising sustainable addition to the repertoire of technologies for treating LL. Photosynthetic algae have been shown to grow in LL under laboratory conditions, while some species have also been employed in larger-scale LL treatments. Treating leachate with algae can contribute to sustainable waste management at existing landfills by remediating low-quality water for recycling and reuse and generating large amounts of algal biomass for cost-effective manufacturing of biofuels and bioproducts. In this review, we will examine LL composition, traditional leachate treatment technologies, LL toxicity to algae, and the potential of employing algae at LL treatment facilities. Emphasis is placed on how algae can be integrated with existing technologies for biological treatment of LL, turning leachate from an environmental liability to an asset that can produce value-added biofuels and bioproducts for the bioeconomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amokrane A, Comel C, Veron J (1997) Landfill leachates pretreatment by coagulation-flocculation. Water Res 31:2775–2782

    Article  CAS  Google Scholar 

  • Amor C, De Torres-Socías E, Peres JA, Maldonado MI, Oller I, Malato S, Lucas MS (2015) Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes. J Hazard Mater 286:261–268

    Article  CAS  PubMed  Google Scholar 

  • Aziz HA, Alias S, Adlan MN, Asaari A, Zahari MS (2007) Colour removal from landfill leachate by coagulation and flocculation processes. Bioresour Technol 98:218–220

    Article  CAS  PubMed  Google Scholar 

  • Baun DL, Christensen TH (2004) Speciation of heavy metals in landfill leachate: a review. Waste Manag Res 22:3–23

    Article  CAS  PubMed  Google Scholar 

  • Baun A, Jensen SD, Bjerg PL, Christensen TH, Nyholm N (2000) Toxicity of organic chemical pollution in groundwater downgradient of a landfill (Grindsted, Denmark). Environ Sci Technol 34:1647–1652

    Article  CAS  Google Scholar 

  • Baun A, Ledin A, Reitzel L, Bjerg PL, Christensen TH (2004) Xenobiotic organic compounds in leachates from ten Danish MSW landfills—chemical analysis and toxicity tests. Water Res 38:3845–3858

    Article  CAS  PubMed  Google Scholar 

  • Bello-Mendoza R, Castillo-Rivera M (1998) Start-up of an anaerobic hybrid (UASB/Filter) reactor treating wastewater from a coffee processing plant. Anaerobe 4:219–225

    Article  CAS  PubMed  Google Scholar 

  • Berrueta J, Castrillón L (1992) Anaerobic treatment of leachates in UASB reactors. J Chem Technol Biotechnol 54:33–37

    Article  CAS  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756. https://doi.org/10.1007/s10811-013-9983-9

    Article  CAS  Google Scholar 

  • Borowitzka MA, Moheimani NR (2013) Open pond culture systems. In: Borowitzka M, Moheimani N. (eds) Algae for biofuels and energy. Developments in applied phycology, vol 5. Springer, Dordrecht, pp 133–152

    Chapter  Google Scholar 

  • Bove D, Merello S, Frumento D, Arni SA, Aliakbarian B, Converti A (2015) A critical review of biological processes and technologies for landfill leachate treatment. Chem Eng Technol 38:2115–2126. https://doi.org/10.1002/ceat.201500257

    Article  CAS  Google Scholar 

  • Bozkurt S, Moreno L, Neretnieks I (2000) Long-term processes in waste deposits. Sci Total Environ 250:101–121

    Article  CAS  PubMed  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sustain Energy Rev 19:360–369. https://doi.org/10.1016/j.rser.2012.11.030

    Article  CAS  Google Scholar 

  • Cammarota M, Yokoyama L, Campos J (2009) Ultrafiltration, chemical and biological oxidation as process combination for the treatment of municipal landfill leachate. Desalination Water Treat 3:50–57

    Article  CAS  Google Scholar 

  • Campos JC, Moura D, Costa AP, Yokoyama L, Araujo FVdF, Cammarota MC, Cardillo L (2013) Evaluation of pH, alkalinity and temperature during air stripping process for ammonia removal from landfill leachate. J Environ Sci Health 48:1105–1113

    Article  CAS  Google Scholar 

  • Casazza AA, Rovatti M (2018) Reduction of nitrogen content in landfill leachate using microalgae. Desalination Water Treat 127:71–74

    Article  CAS  Google Scholar 

  • Çeçen F, Aktaş Ö (2004) Aerobic co-treatment of landfill leachate with domestic wastewater. Environ Eng Sci 21:303–312

    Article  CAS  Google Scholar 

  • Çeçen F, Çakıroğlu D (2001) Impact of landfill leachate on the co-treatment of domestic wastewater. Biotechnol Lett 23:821–826

    Article  Google Scholar 

  • Çeçen F, Erdinçler A, Kiliç E (2003) Effect of powdered activated carbon addition on sludge dewaterability and substrate removal in landfill leachate treatment. Adv Environ Res 7:707–713

    Article  CAS  Google Scholar 

  • Chang H, Quan X, Zhong N, Zhang Z, Lu C, Li G, Cheng Z, Yang L (2018) High-efficiency nutrients reclamation from landfill leachate by microalgae Chlorella vulgaris in membrane photobioreactor for bio-lipid production. Bioresour Technol 266:374–381

    Article  CAS  PubMed  Google Scholar 

  • Chang H, Fu Q, Zhong N, Yang X, Quan X, Li S, Fu J, Xiao C (2019) Microalgal lipids production and nutrients recovery from landfill leachate using membrane photobioreactor. Bioresour Technol 277:18–26

    Article  CAS  PubMed  Google Scholar 

  • Cheah WY, Ling TC, Show PL, Juan JC, Chang J-S, Lee D-J (2016) Cultivation in wastewaters for energy: a microalgae platform. Appl Energy 179:609–625

    Article  CAS  Google Scholar 

  • Chemlal R, Azzouz L, Kernani R, Abdi N, Lounici H, Grib H, Mameri N, Drouiche N (2014) Combination of advanced oxidation and biological processes for the landfill leachate treatment. Ecol Eng 73:281–289

    Article  Google Scholar 

  • Cheng H-X, Tian G-M (2013) Preliminary evaluation of a newly isolated microalga Scenedesmus sp. CHX1 for treating landfill leachate. In: 2013 third international conference on intelligent system design and engineering applications, pp. 1057–1060

  • Cheung K, Chu L, Wong MH (1993) Toxic effect of landfill leachate on microalgae. Water Air Soil Pollut 69:337–349

    Article  CAS  Google Scholar 

  • Chian ES, DeWalle FB (1977) Characterization of soluble organic matter in leachate. Environ Sci Technol 11:158–163

    Article  CAS  Google Scholar 

  • Chianese A, Ranauro R, Verdone N (1999) Treatment of landfill leachate by reverse osmosis. Water Res 33:647–652

    Article  CAS  Google Scholar 

  • Christensen TH, Kjeldsen P (1995) Landfill emissions and environmental impact: An introduction. In: 5th international landfill symposium, Cagliari, Italy, 1995. Environmental Sanitary Engineering Centre.

  • Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen HJ, Heron G (2001) Biogeochemistry of landfill leachate plumes. Appl Geochem 16:659–718

    Article  CAS  Google Scholar 

  • Chu LM, Cheung KC, Wong MH (1996) Algal purification of pretreated landfill. Leachate Toxicol Environ Chem 53:159–174

    Article  CAS  Google Scholar 

  • Clément B, Merlin G (1995) The contribution of ammonia and alkalinity to landfill leachate toxicity to duckweed. Sci Total Environ 170:71–79

    Article  Google Scholar 

  • Colombo A, Módenes AN, Trigueros DEG, da Costa SIG, Borba FH, Espinoza-Quiñones FR (2019) Treatment of sanitary landfill leachate by the combination of photo-Fenton and biological processes. J Clean Prod 214:145–153

    Article  CAS  Google Scholar 

  • Costa RH, Martins CL, Fernandes H, Velho VF (2014) Consortia of microalgae and bacteria in the performance of a stabilization pond system treating landfill leachate. Water Sci Technol 70:486–494

    Article  CAS  PubMed  Google Scholar 

  • Daskalopoulos E, Badr O, Probert S (1997) Economic and environmental evaluations of waste treatment and disposal technologies for municipal solid waste. Appl Energy 58:209–255

    Article  CAS  Google Scholar 

  • Del Moro G, Mancini A, Mascolo G, Di Iaconi C (2013) Comparison of UV/H2O2 based AOP as an end treatment or integrated with biological degradation for treating landfill leachates. Chem Eng J 218:133–137

    Article  CAS  Google Scholar 

  • Deng Y, Zhao R (2015) Advanced oxidation processes (AOPs) in wastewater treatment. Curr Pollut Report 1:167–176

    Article  CAS  Google Scholar 

  • Desai M (2016) The efficacy of using the microalgae Chlorella sp. for the treatment of hazardous landfill leachate (Doctoral dissertation). https://pdfs.semanticscholar.org/b9fc/423f34e61a488ced4a5e54b9ec967b2f4150.pdf. Accessed 13 Sept 2019

  • Dogaris I, Welch M, Meiser A, Walmsley L, Philippidis G (2015) A novel horizontal photobioreactor for high-density cultivation of microalgae. Bioresour Technol 198:316–324

    Article  CAS  PubMed  Google Scholar 

  • Dogaris I, Loya B, Cox J, Philippidis G (2019) Study of landfill leachate as a sustainable source of water and nutrients for algal biofuels and bioproducts using the microalga Picochlorum oculatum in a novel scalable bioreactor. Bioresour Technol 282:18–27

    Article  CAS  PubMed  Google Scholar 

  • Draaisma RB, Wijffels RH, Slegers PM, Brentner LB, Roy A, Barbosa MJ (2013) Food commodities from microalgae. Curr Opin Biotechnol 24:169–177

    Article  CAS  PubMed  Google Scholar 

  • Edmundson SJ, Wilkie AC (2013) Landfill leachate—a water and nutrient resource for algae-based biofuels. Environ Technol 34:1849–1857

    Article  CAS  PubMed  Google Scholar 

  • El Ouaer M, Halaoui M, Trabelsi I, Hassen A (2016) Adaptation and use of Chlorella sp. for landfill leachate treatment. Int J Innov Appl Stud 14:807

    Google Scholar 

  • El Ouaer M, Kallel A, Kasmi M, Hassen A, Trabelsi I (2017) Tunisian landfill leachate treatment using Chlorella sp.: effective factors and microalgae strain performance. Arab J Geosci 10:457

    Article  CAS  Google Scholar 

  • El Ouaer M, Turki N, Kallel A, Halaoui M, Trabelsi I, Hassen A (2019) Recovery of landfill leachate as culture medium for two microalgae: Chlorella sp. and Scenedesmus sp. Environ Dev Sustain 1–21

  • EPA, United States Environmental Protection Agency (2019) Advancing Sustainable Materials Management: 2017 Fact Sheet.

  • Ernst W, Hennigar P, Doe K, Wade S, Julien G (1994) Characterization of the chemical constituents and toxicity to aquatic organisms of a municipal landfill leachate. Water Qual Res J 29:89–102

    Article  CAS  Google Scholar 

  • Fan Z, Qin L, Zheng W, Meng Q, Shen C, Zhang G (2018) Oscillating membrane photoreactor combined with salt-tolerated Chlorella pyrenoidosa for landfill leachates treatment. Bioresour Technol 269:134–142

    Article  CAS  PubMed  Google Scholar 

  • Fernández JM, Méndez RJ, Lema JM (1995) Anaerobic treatment of eucalyptus fiberboard manufacturing wastewater by a hybrid USBF lab-scale reactor. Environ Technol 16:677–684

    Article  Google Scholar 

  • Fernandes H, Viancelli A, Martins CL, Antonio RV, Costa RH (2013) Microbial and chemical profile of a ponds system for the treatment of landfill leachate. Waste Manag 33:2123–2128

    Article  CAS  PubMed  Google Scholar 

  • Ferrari B, Radetski CM, Veber AM, Ferard JF (1999) Ecotoxicological assessment of solid wastes: a combined liquid-and solid-phase testing approach using a battery of bioassays and biomarkers. Environ Toxicol Chem Intern J 18:1195–1202

    CAS  Google Scholar 

  • Ferraz FM, Povinelli J, Vieira EM (2013) Ammonia removal from landfill leachate by air stripping and absorption. Environ Technol 34:2317–2326

    Article  CAS  PubMed  Google Scholar 

  • Fonseka H, Senewirathna P, Bandara W, Ellawala C (2016) Performance of an UASB reactor for leachate treatment under ambient temperature. In: Proceedings of the undergraduate research symposium on recent advances in civil engineering

  • Foo K, Hameed B (2009) An overview of landfill leachate treatment via activated carbon adsorption process. J Hazard Mater 171:54–60

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Oloibiri V, Chys M, Audenaert W, Decostere B, He Y, Van Langenhove H, Demeestere K, Van Hulle SW (2015) The present status of landfill leachate treatment and its development trend from a technological point of view. Rev Environ Sci Bio/Technol 14:93–122

    Article  CAS  Google Scholar 

  • Ghafari S, Aziz HA, Isa MH, Zinatizadeh AA (2009) Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. J Hazard Mater 163:650–656

    Article  CAS  PubMed  Google Scholar 

  • Ghosh P, Thakur IS, Kaushik A (2017) Bioassays for toxicological risk assessment of landfill leachate: a review. Ecotoxicol Environ Saf 141:259–270

    Article  CAS  PubMed  Google Scholar 

  • Goi A, Veressinina Y, Trapido M (2009) Combination of ozonation and the Fenton processes for landfill leachate treatment: evaluation of treatment efficiency. Ozone Sci Eng 31:28–36

    Article  CAS  Google Scholar 

  • Gonçalves AL, Pires JCM, Simões M (2017) A review on the use of microalgal consortia for wastewater treatment. Algal Res 24:403–415

    Article  Google Scholar 

  • Guo J-S, Abbas AA, Chen Y-P, Liu Z-P, Fang F, Chen P (2010) Treatment of landfill leachate using a combined stripping, Fenton, SBR, and coagulation process. J Hazard Mater 178:699–705

    Article  CAS  PubMed  Google Scholar 

  • Hajipour A, Moghadam N, Nosrati M, Shojasadati S (2011) Aerobic thermophilic treatment of landfill leachate in a moving-bed biofilm bioreactor. J Environ Health Sci Eng 8:3–14

    CAS  Google Scholar 

  • Hasar H, Unsal SA, Ipek U, Karatas S, Cınar O, Yaman C, Kınacı C (2009) Stripping/flocculation/membrane bioreactor/reverse osmosis treatment of municipal landfill leachate. J Hazard Mater 171:309–317

    Article  CAS  PubMed  Google Scholar 

  • Hassan SH, Van Ginkel SW, Hussein MA, Abskharon R, Oh SE (2016) Toxicity assessment using different bioassays and microbial biosensors. Environ Int 92–93:106–118

    Article  CAS  PubMed  Google Scholar 

  • Henry J, Prasad D, Young H (1987) Removal of organics from leachates by anaerobic filter. Water Res 21:1395–1399

    Article  CAS  Google Scholar 

  • Heyer K, Stegmann R (2002) Leachate management: leachate generation, collection, treatment and costs. Ingenieurbüro für Abfallwirtschaft. https://www.ifas-hamburg.de/pdf/leachate.pdf Accessed 05 Feb 2020

  • Hongjiang L, Youcai Z, Lei S, Yingying G (2009) Three-stage aged refuse biofilter for the treatment of landfill leachate. J Environ Sci 21:70–75

    Article  Google Scholar 

  • Huang D, Hu C, Zeng G, Cheng M, Xu P, Gong X, Wang R, Xue W (2017) Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation. Sci Total Environ 574:1599–1610

    Article  CAS  PubMed  Google Scholar 

  • Inanc B, Calli B, Saatci A (2000) Characterization and anaerobic treatment of the sanitary landfill leachate in Istanbul. Water Sci Technol 41:223–230

    Article  CAS  PubMed  Google Scholar 

  • ISO (1989) Water quality—FRESH water algal growth inhibition test with Scenedesmus subspicatus and Selenastrum capricornutum. International Organization for Standardization, Geneva

    Google Scholar 

  • Jemec A, Tisler T, Zgajnar-Gotvajn A (2012) Assessment of landfill leachate toxicity reduction after biological treatment. Arch Environ Contam Toxicol 62:210–221

    Article  CAS  PubMed  Google Scholar 

  • Joshi SM, Gogate PR (2019) Treatment of landfill leachate using different configurations of ultrasonic reactors combined with advanced oxidation processes. Sep Purif Technol 211:10–18

    Article  CAS  Google Scholar 

  • Jurkoniene S, Maksimov G, Darginaviciene J, Sadauskas K, Vitkus R, Manusadzianas L (2004) Leachate toxicity assessment by responses of algae Nitellopsis obtusa membrane ATPase and cell resting potential, and with Daphtoxkit F magna test. Environ Toxicol 19:403–408

    Article  CAS  PubMed  Google Scholar 

  • Kelly PT, He Z (2014) Nutrients removal and recovery in bioelectrochemical systems: a review. Bioresour Technol 153:351–360

    Article  CAS  PubMed  Google Scholar 

  • Kettunen RH, Rintala JA (1998) Performance of an on-site UASB reactor treating leachate at low temperature. Water Res 32:537–546

    Article  CAS  Google Scholar 

  • Khanzada ZT, Övez S (2018) Growing fresh water microalgae in high ammonium landfill leachate. Am J Mech Appl 6:50–61

    Google Scholar 

  • Kılıç MY, Kestioglu K, Yonar T (2007) Landfill leachate treatment by the combination of physicochemical methods with adsorption process. J Biol Environ Sci 1:37–43

    Google Scholar 

  • Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32:297–336

    Article  CAS  Google Scholar 

  • Klauson D, Kivi A, Kattel E, Klein K, Viisimaa M, Bolobajev J, Velling S, Goi A, Tenno T, Trapido M (2015) Combined processes for wastewater purification: treatment of a typical landfill leachate with a combination of chemical and biological oxidation processes. J Chem Technol Biotechnol 90:1527–1536

    Article  CAS  Google Scholar 

  • Kokkali V, van Delft W (2014) Overview of commercially available bioassays for assessing chemical toxicity in aqueous samples. TrAC Trend Anal Chem 61:133–155

    Article  CAS  Google Scholar 

  • Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal Res 6:52–63. https://doi.org/10.1016/j.algal.2014.09.002

    Article  Google Scholar 

  • Kulikowska D, Klimiuk E (2008) The effect of landfill age on municipal leachate composition. Bioresour Technol 99:5981–5985

    Article  CAS  PubMed  Google Scholar 

  • Kumari M, Ghosh P, Thakur IS (2016) Landfill leachate treatment using bacto-algal co-culture: an integrated approach using chemical analyses and toxicological assessment. Ecotoxicol Environ Saf 128:44–51

    Article  CAS  PubMed  Google Scholar 

  • Kurniawan TA, Lo W-H, Chan GY (2006) Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate. J Hazard Mater 129:80–100

    Article  CAS  PubMed  Google Scholar 

  • Langwaldt J, Puhakka J (2000) On-site biological remediation of contaminated groundwater: a review. Environ Pollut 107:187–197

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhao Q, Hao X (1999) Ammonium removal from landfill leachate by chemical precipitation. Waste Manag 19:409–415

    Article  CAS  Google Scholar 

  • Li W, Hua T, Zhou Q, Zhang S, Li F (2010) Treatment of stabilized landfill leachate by the combined process of coagulation/flocculation and powder activated carbon adsorption. Desalination 264:56–62

    Article  CAS  Google Scholar 

  • Lim CK, Seow TW, Neoh CH, Nor MHM, Ibrahim Z, Ware I, Sarip SHM (2016) Treatment of landfill leachate using ASBR combined with zeolite adsorption technology. 3 Biotech 6:195

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin L, Chan GY, Jiang BL, Lan CY (2007) Use of ammoniacal nitrogen tolerant microalgae in landfill leachate treatment. Waste Manag 27:1376–1382

    Article  CAS  PubMed  Google Scholar 

  • Linde K, Jönsson A-s, Wimmerstedt R (1995) Treatment of three types of landfill leachate with reverse osmosis. Desalination 101:21–30

    Article  CAS  Google Scholar 

  • Lippi M, Ley MBRG, Mendez GP, Junior RAFC (2018) State of art of landfill leachate treatment: literature review and critical evaluation. Cienc Nat 40:78

    Google Scholar 

  • Maehlum T (1995) Treatment of landfill leachate in on-site lagoons and constructed wetlands. Water Sci Technol 32:129–135

    Article  CAS  Google Scholar 

  • Martins CL, Fernandes H, Costa RH (2013) Landfill leachate treatment as measured by nitrogen transformations in stabilization ponds. Bioresour Technol 147:562–568

    Article  CAS  PubMed  Google Scholar 

  • Marttinen S, Kettunen R, Sormunen K, Soimasuo R, Rintala J (2002) Screening of physical–chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere 46:851–858

    Article  CAS  PubMed  Google Scholar 

  • Matsakas L, Gao Q, Jansson S, Rova U, Christakopoulos P (2017) Green conversion of municipal solid wastes into fuels and chemicals. Electron J Biotechnol 26:69–83

    Article  CAS  Google Scholar 

  • Maynard H, Ouki S, Williams S (1999) Tertiary lagoons: a review of removal mecnisms and performance. Water Res 33:1–13

    Article  CAS  Google Scholar 

  • Meeroff DE, Lakner J, Coffman N (2016) Safe discharge of landfill leachate to the environment. Year 2 final report. Hinkley Center for Solid and Hazardous Waste Management, Gainesville, FL. https://labees.civil.fau.edu/MeeroffSafeDischargeYr2Final-11073.pdf. Accessed 05 Dec 2019

  • Mehmood M, Adetutu E, Nedwell D, Ball AS (2009) In situ microbial treatment of landfill leachate using aerated lagoons. Bioresour Technol 100:2741–2744

    Article  CAS  PubMed  Google Scholar 

  • Mustafa E-M, Phang S-M, Chu W-L (2012) Use of an algal consortium of five algae in the treatment of landfill leachate using the high-rate algal pond system. J Appl Phycol 24:953–963

    Article  CAS  Google Scholar 

  • Nair AT, Nagendra SS (2018) Chlorella Pyrenoidosa mediated phycoremediation of landfill leachate. In: International conference on impact of global atmospheric changes on natural resources (IGACNR), 2018 Bengaluru, Karnataka, India pp 65–68.

  • Nair AT, Senthilnathan J, Nagendra SMS (2019) Application of the phycoremediation process for tertiary treatment of landfill leachate and carbon dioxide mitigation. J Water Process Eng 28:322–330

    Article  Google Scholar 

  • Nelson MJ, Nakhla G, Zhu J (2017) Fluidized-bed bioreactor applications for biological wastewater treatment: a review of research and developments. Engineering 3:330–342

    Article  Google Scholar 

  • Nordin N, Yusof N, Samsudin S (2017) Biomass production of Chlorella sp., Scenedesmus sp., and Oscillatoria sp. in nitrified landfill leachate. Waste Biomass Valoriz 8:2301–2311

    Article  CAS  Google Scholar 

  • Ntampou X, Zouboulis A, Samaras P (2006) Appropriate combination of physico-chemical methods (coagulation/flocculation and ozonation) for the efficient treatment of landfill leachates. Chemosphere 62:722–730

    Article  CAS  PubMed  Google Scholar 

  • Oller I, Malato S, Sánchez-Pérez J (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409:4141–4166

    Article  CAS  PubMed  Google Scholar 

  • Paskuliakova A, Tonry S, Touzet N (2016) Phycoremediation of landfill leachate with chlorophytes: phosphate a limiting factor on ammonia nitrogen removal. Water Res 99:180–187

    Article  CAS  PubMed  Google Scholar 

  • Paskuliakova A, McGowan T, Tonry S, Touzet N (2018a) Microalgal bioremediation of nitrogenous compounds in landfill leachate—sthe importance of micronutrient balance in the treatment of leachates of variable composition. Algal Res 32:162–171

    Article  Google Scholar 

  • Paskuliakova A, McGowan T, Tonry S, Touzet N (2018b) Phycoremediation of landfill leachate with the chlorophyte Chlamydomonas sp. SW15aRL and evaluation of toxicity pre and post treatment. Ecotoxicol Environ Saf 147:622–630

    Article  CAS  PubMed  Google Scholar 

  • Peng Y (2017) Perspectives on technology for landfill leachate treatment. Arab J Chem 10:S2567–S2574

    Article  CAS  Google Scholar 

  • Pereira SF, Goncalves AL, Moreira FC, Silva TF, Vilar VJ, Pires JC (2016) Nitrogen removal from landfill leachate by microalgae. Int J Mol Sci 17:1926

    Article  CAS  PubMed Central  Google Scholar 

  • Pi K, Li Z, Wan D, Gao L (2009) Pretreatment of municipal landfill leachate by a combined process. Process Saf Environ Prot 87:191–196

    Article  CAS  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    Article  CAS  PubMed  Google Scholar 

  • Plotkin S, Ram NM (1984) Multiple bioassays to assess the toxicity of a sanitary landfill leachate. Arch Environ Contam Toxicol 13:197–206

    Article  CAS  PubMed  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Reinhart DR, Basel Al-Yousfi A (1996) The impact of leachate recirculation on municipal solid waste landfill operating characteristics. Waste Manag Res 14:337–346

    Article  CAS  Google Scholar 

  • Reis C, Loures C, Castro H, Rós P, Santos J, Filho H, Silva M (2016) Microalgae assisted bioremediation of landfill leachate using a biocoil reactor: evaluation of operational conditions using taguchi experimental design. Br J Environ Clim Chang 6:299–308

    Article  CAS  Google Scholar 

  • Renou S, Givaudan J, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatment: review and opportunity. J Hazard Mater 150:468–493

    Article  CAS  PubMed  Google Scholar 

  • Richards RG, Mullins BJ (2013) Using microalgae for combined lipid production and heavy metal removal from leachate. Ecol Model 249:59–67

    Article  CAS  Google Scholar 

  • Robinson HD, Grantham G (1988) The treatment of landfill leachates in on-site aerated lagoon plants: experience in Britain and Ireland. Water Res 22:733–747

    Article  CAS  Google Scholar 

  • Rutherford L, Matthews S, Doe K, Julien G (2000) Aquatic toxicity and environmental impact of leachate discharges from a municipal landfill. Water Qual Res J 35:39–58

    Article  CAS  Google Scholar 

  • Šan I, Onay TT (2001) Impact of various leachate recirculation regimes on municipal solid waste degradation. J Hazard Mater 87:259–271

    Article  PubMed  Google Scholar 

  • Sardi Saavedra A, Pena Salamanca EJ, Madera Parra CA, Ceron Hernandez VA (2016) Diversidad de las comunidades de algas asociadas a un sistema algal de alta tasa fotosintetica para la biorremediacion de lixiviados de rellenos sanitarios. Latin Am J Aquat Res 44:113–120

    Article  Google Scholar 

  • Sardi Saavedra A, Madera Parra C, Peña EJ, Cerón VA, Mosquera J (2018) Grupos funcionales fitoplanctónicos en una laguna algal de alta tasa usada para la biorremediación de lixiviados de rellenos sanitarios. Acta Biológ Colombiana 23:295–303

    Article  Google Scholar 

  • Sevda S, Sreekishnan T, Pous N, Puig S, Pant D (2018) Bioelectroremediation of perchlorate and nitrate contaminated water: a review. Bioresour Technol 255:331–339

    Article  CAS  PubMed  Google Scholar 

  • Sevda S, Garlapati VK, Sharma S, Bhattacharya S, Mishra S, Sreekrishnan T, Pant D (2019) Microalgae at niches of bioelectrochemical systems: a new platform for sustainable energy production coupled industrial effluent treatment. Bioresour Technol Rep 7:100290

    Article  Google Scholar 

  • Silva A, Dezotti M, SantAnna GL Jr (2004) Treatment and detoxification of a sanitary landfill leachate. Chemosphere 55:207–214

    Article  CAS  PubMed  Google Scholar 

  • Silveira JE, Zazo JA, Pliego G, Casas JA (2018) Landfill leachate treatment by sequential combination of activated persulfate and Fenton oxidation. Waste Manag 81:220–225

    Article  CAS  PubMed  Google Scholar 

  • Sivic A, Atanasova N, Puig S, Griessler Bulc T (2017) Ammonium removal in landfill leachate using SBR technology: dispersed versus attached biomass. Water Sci Technol 77:27–38

    Article  CAS  Google Scholar 

  • Smaoui Y, Bouzid J, Sayadi S (2019) Combination of air stripping and biological processes for landfill leachate treatment. Environ Eng Res 25:80–87

    Article  Google Scholar 

  • Sniffen KD, Sales CM, Olson MS (2015) Nitrogen removal from raw landfill leachate by an algae–bacteria consortium. Water Sci Technol 73:479–485

    Article  CAS  Google Scholar 

  • Sniffen KD, Price JR, Sales CM, Olson MS (2017) Influence of scale on biomass growth and nutrient removal in an algal–bacterial leachate treatment system. Environ Sci Technol 51:13344–13352

    Article  CAS  PubMed  Google Scholar 

  • Soubh A, Mokhtarani N (2016) The post treatment of composting leachate with a combination of ozone and persulfate oxidation processes. Rsc Adv 6:76113–76122

    Article  CAS  Google Scholar 

  • Sponza DT, Ağdağ ON (2004) Impact of leachate recirculation and recirculation volume on stabilization of municipal solid wastes in simulated anaerobic bioreactors. Process Biochem 39:2157–2165

    Article  CAS  Google Scholar 

  • Sutherland DL, Howard-Williams C, Turnbull MH, Broady PA, Craggs RJ (2015) Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 184:222–229

    Article  CAS  PubMed  Google Scholar 

  • Tatsi A, Zouboulis A, Matis K, Samaras P (2003) Coagulation–flocculation pretreatment of sanitary landfill leachates. Chemosphere 53:737–744

    Article  CAS  PubMed  Google Scholar 

  • Thomas DJ, Tyrrel SF, Smith R, Farrow S (2009) Bioassays for the evaluation of landfill leachate toxicity. J Toxicol Environ Health B 12:83–105

    Article  CAS  Google Scholar 

  • Thongpinyochai S, Ritchie RJ (2014) Using Chlorella vulgaris to decrease the environmental effect of garbage dump leachates. J Bioremediat Biodegred 5:1

    Google Scholar 

  • Tighiri HO, Erkurt EA (2019) Biotreatment of landfill leachate by microalgae-bacteria consortium in sequencing batch mode and product utilization. Bioresour Technol 286:121396

    Article  CAS  PubMed  Google Scholar 

  • Timur H, Özturk I (1999) Anaerobic sequencing batch reactor treatment of landfill leachate. Water Res 33:3225–3230

    Article  CAS  Google Scholar 

  • Timur H, Ozturk I, Altinbas M, Arikan O, Tuyluoglu B (2000) Anaerobic treatability of leachate: a comparative evaluation for three different reactor systems. Water Sci Technol 42:287–292

    Article  CAS  Google Scholar 

  • Trebouet D, Schlumpf J, Jaouen P, Quemeneur F (2001) Stabilized landfill leachate treatment by combined physicochemical–nanofiltration processes. Water Res 35:2935–2942

    Article  CAS  PubMed  Google Scholar 

  • Tsagarakis K, Mara D, Angelakis A (2003) Application of cost criteria for selection of municipal wastewater treatment systems. Water Air Soil Pollut 142:187–210

    Article  CAS  Google Scholar 

  • Ushikoshi K, Kobayashi T, Uematsu K, Toji A, Kojima D, Matsumoto K (2002) Leachate treatment by the reverse osmosis system. Desalin 150:121–129

    Article  CAS  Google Scholar 

  • Waara S, Allard A, Ek M, Svenson A (2003) Chemical and toxicological characterization of landfill leachate after treatment in a pilot scale plant using different treatment methods. In: Proceedings Sardinia, 2003, ninth international waste management and landfill symposium, Cagliari, Italy, 6–10 October 2003.

  • Wang H, Ren ZJ (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 31:1796–1807

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Smith DW, El-Din MG (2003) Application of advanced oxidation methods for landfill leachate treatment—a review. J Environ Eng Sci 2:413–427

    Article  CAS  Google Scholar 

  • Wang K, Li L, Tan F, Wu D (2018) Treatment of landfill leachate using activated sludge technology: a review. Archaea 2018

  • Ward ML, Bitton G, Townsend T, Booth M (2002) Determining toxicity of leachates from Florida municipal solid waste landfills using a battery-of-tests approach. Environ Toxicol Int J 17:258–266

    Article  CAS  Google Scholar 

  • Wei D, Xufei L, Qingxi Z, Jiagen Z, Jin'an W, Weijun Z, Chengjun W (2017) Application of UASB reactor in leachate treatment of Beijing Asuwei waste sanitary landfill site. Meteorol Environ Res 8(1)

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796

    Article  CAS  PubMed  Google Scholar 

  • Wiszniowski J, Robert D, Surmacz-Gorska J, Miksch K, Weber J (2006) Landfill leachate treatment methods: a review. Environ Chen Lett 4:51–61

    Article  CAS  Google Scholar 

  • Xiong J, Zheng Z, Yang X, He J, Luo X, Gao B (2018) Mature landfill leachate treatment by the MBBR inoculated with biocarriers from a municipal wastewater treatment plant. Process Saf Environ Prot 119:304–310

    Article  CAS  Google Scholar 

  • Yen H-W, Hu IC, Chen C-Y, Ho S-H, Lee D-J, Chang J-S (2013) Microalgae-based biorefinery—from biofuels to natural products. Bioresour Technol 135:166–174. https://doi.org/10.1016/j.biortech.2012.10.099

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Ding L, Ren H (2009) Pretreatment of ammonium removal from landfill leachate by chemical precipitation. J Hazard Mater 166:911–915

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Zhou Y, Huang S, Qiu D, Schideman L, Chai X, Zhao Y (2014) Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production. Bioresour Technol 156:322–328

    Article  CAS  PubMed  Google Scholar 

  • Zittelli GC, Biondi N, Rodolfi L, Tredici MR (2013) Photobioreactors for mass production of microalgae. In: Richmond A, Hu Q (eds) Handbook of Microalgal Culture, 2nd edn. Wiley, Oxford, pp 225–266

    Chapter  Google Scholar 

Download references

Acknowledgements

The financial support of the Florida Department of Agriculture and Consumer Services (Grant 26100) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

GP conceived the idea for the review article, contributed, and edited it. EA performed the literature search for sections 1–3 and drafted the respective sections. ID performed the literature search and drafted the text for section 4, and prepared all figures and tables. All authors contributed to the revision of the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to George P. Philippidis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogaris, I., Ammar, E. & Philippidis, G.P. Prospects of integrating algae technologies into landfill leachate treatment. World J Microbiol Biotechnol 36, 39 (2020). https://doi.org/10.1007/s11274-020-2810-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-020-2810-y

Keywords

Navigation