Skip to main content
Log in

Removal of Arsenate from Aqueous Solution by Synthetic Siderite-Modified Biochar: Characteristics and Mechanisms

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract 

High arsenic groundwater has been observed throughout the world, which poses severe health impacts on human beings. It urgently needs effective adsorbents to lower arsenic concentration from the target groundwater for the purpose of drinking. In this study, siderite-modified biochar (SID-BC) was synthesized with the hydrothermal method as an adsorbent for arsenate (As(V)) removal from aqueous solution. Batch experiments were performed to investigate the effects of the mass ratio of siderite to biochar (i.e., 4:1, 4:2, 4:3, and 4:4), contact time, initial As(V) concentration, temperature, and solution pH on As(V) adsorption on the adsorbents. The highest adsorption of As(V) was observed on the SID-BC with the mass ratio of 4/3 (SID-BC-4–3), which may result from the high specific area of the adsorbent (8 times larger than the pristine biochar and 4 times larger than the pristine siderite). Adsorption kinetics revealed that As(V) adsorption was in line with the pseudo-second-order model. As(V) adsorption on SID-BC-4–3 was better fitted to Langmuir isotherm and D-R model, relative to Freundlich isotherm, with the maximum calculated adsorption capacity of 33.6 mg g−1. Thermodynamic study showed that the adsorption reaction was an exothermic nature and a spontaneous process. Although Cl and SO42− showed negligible effects on As(V) adsorption, HCO3, CO32−, and PO43− had an evidently negative effect on the adsorption of As(V). The lowest As(V) adsorption was observed with the coexistence of PO43−. Results of SEM, XRD, FTIR, and XPS indicated that the adsorption was controlled by the chemical process via the complexation of As(V) with Fe–O and co-precipitation with Fe(III) hydroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors declare that all data generated or analyzed during this study are available within the article (and its supplementary information files).

References

  • Ahmad, S. Z. N., Wan Salleh, W. N., Ismail, A. F., Yusof, N., Mohd Yusop, M. Z., & Aziz, F. (2020). Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms. Chemosphere, 248, 126008–126024.

    Article  CAS  Google Scholar 

  • Akbari, A., Akbari, E., Azadmehr, A., & Hezarkhani, A. (2021). Silica-functionalized pyrite core-shell particle as a new mesoporous adsorbent for water-soluble dyestuffs: Characterization, kinetic and thermodynamic studies. Journal of Environmental Chemical Engineering, 9, 106764–106782.

    Article  CAS  Google Scholar 

  • Al-husseiny, R. A., & Ebrahim, S. E. (2022). Synthesis of nano-magnetite and magnetite/synthetic geopolymer nano-porous composite for application as a novel adsorbent. Environmental Nanotechnology, Monitoring & Management, 18, 100700–100708.

    Article  CAS  Google Scholar 

  • Altowayti, W. A. H., Algaifi, H. A., Bakar, S. A., & Shahir, S. (2019). The adsorptive removal of As (III) using biomass of arsenic resistant Bacillus thuringiensis strain WS3: Characteristics and modelling studies. Ecotoxicology and Environmental Safety, 172, 176–185.

    Article  CAS  Google Scholar 

  • de VargasBrião, G., da Silva, M. G. C., Vieira, M. G. A., & Chu, K. H. (2022). Correlation of type II adsorption isotherms of water contaminants using modified BET equations. Colloid and Interface Science Communications, 46, 100557–100564.

    Article  CAS  Google Scholar 

  • Daikh, S., Ouis, D., Benyoucef, A. & Mouffok, B. (2022). Equilibrium, kinetic and thermodynamic studies for evaluation of adsorption capacity of a new potential hybrid adsorbent based on polyaniline and chitosan for Acetaminophen. Chemical Physics Letters, 139565–139576.

  • Fan, J. M., Xu, X., Ni, Q. L., Lin, Q., Fang, J., Chen, Q., Shen, X. D., & Lou, L. P. (2018). Enhanced As (V) Removal from aqueous solution by biochar prepared from iron-impregnated corn straw. Journal of Chemistry, 2018, 1–8.

    Google Scholar 

  • Gonçalves Jr, P. R. G., De Abreu, H. A., & Duarte, H. A. (2022). Arsenic adsorption on Mn3O4 surface: As(OH)3/AsO(OH)3 oxidation mechanism. Applied Surface Science, 580, 152213–152223.

    Article  CAS  Google Scholar 

  • Guo, H. M., Li, Y., & Zhao, K. (2010). Arsenate removal from aqueous solution using synthetic siderite. Journal of Hazardous Materials, 176, 174–180.

    Article  CAS  Google Scholar 

  • Guo, H. M., Li, Y., Zhao, K., Ren, Y., & Wei, C. (2011). Removal of arsenite from water by synthetic siderite: Behaviors and mechanisms. Journal of Hazardous Materials, 186, 1847–1854.

    Article  CAS  Google Scholar 

  • Guo, H. M., Stuben, D., & Berner, Z. (2007). Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent. Journal of Colloid and Interface Science, 315, 47–53.

    Article  CAS  Google Scholar 

  • Guo, H. M., Stuben, D., & Berner, Z. (2007). Arsenic removal from water using natural iron mineral-quartz sand columns. Science of Total Environment, 377, 142–151.

    Article  CAS  Google Scholar 

  • Guo, H. M., Stüben, D., & Berner, Z. (2007). Removal of arsenic from aqueous solution by natural siderite and hematite. Applied Geochemistry, 22, 1039–1051.

    Article  CAS  Google Scholar 

  • Guo, H. M., Stuben, D., Berner, Z., & Kramar, U. (2008). Adsorption of arsenic species from water using activated siderite-hematite column filters. Journal of Hazardous Materials, 151, 628–635.

    Article  CAS  Google Scholar 

  • Guo, H. M., Wen, D. G., Liu, Z. Y., Jia, Y. F., & Guo, Q. (2014). A review of high arsenic groundwater in Mainland and Taiwan, China: Distribution, characteristics and geochemical processes. Applied Geochemistry, 41, 196–217.

    Article  CAS  Google Scholar 

  • Guo, H. M., Zhang, B., Wang, G. C., & Shen, Z. L. (2010). Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia. Chemical Geology, 270, 117–125.

    Article  CAS  Google Scholar 

  • Hajji, S., Montes-Hernandez, G., Sarret, G., Tordo, A., Morin, G., Ona-Nguema, G., Bureau, S., Turki, T., & Mzoughi, N. (2019). Arsenite and chromate sequestration onto ferrihydrite, siderite and goethite nanostructured minerals: Isotherms from flow-through reactor experiments and XAS measurements. Journal of Hazardous Materials, 362, 358–367.

    Article  CAS  Google Scholar 

  • Haldar, D., Duarah, P., & Purkait, M. K. (2020). MOFs for the treatment of arsenic, fluoride and iron contaminated drinking water: A review. Chemosphere, 251, 126388–126410.

    Article  CAS  Google Scholar 

  • He, R. Z., Peng, Z. Y., Lyu, H. H., Huang, H., Nan, Q., & Tang, J. C. (2018). Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal. Science of Total Environment, 612, 1177–1186.

    Article  CAS  Google Scholar 

  • Hu, H. M., Zhang, Q. W., Wang, C., Chen, M., & Wang, Q. (2022). Facile synthesis of CaMn1-xFexO3 to incorporate Fe(IV) at high ratio in perovskite structure for efficient in situ adsorption-oxidation of As(III). Chemical Engineering Journal, 435, 134894–134905.

    Article  CAS  Google Scholar 

  • Hu, Q. S., Liu, Y. L., Gu, X. Y., & Zhao, Y. P. (2017). Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe2O4 magnetic nanoparticles. Chemosphere, 181, 328–336.

    Article  CAS  Google Scholar 

  • Hua, J. M. (2018). Adsorption of low-concentration arsenic from water by co-modified bentonite with manganese oxides and poly(dimethyldiallylammonium chloride). Journal of Environmental Chemical Engineering, 6, 156–168.

    Article  CAS  Google Scholar 

  • Irshad, M. K., Noman, A., Wang, Y., Yin, Y. J., Chen, C., & Shang, J. Y. (2022). Goethite modified biochar simultaneously mitigates the arsenic and cadmium accumulation in paddy rice (Oryza sativa) L. Environmental Research, 206, 112238–112248.

    Article  CAS  Google Scholar 

  • Isaac, R., & Siddiqui, S. (2022). Adsorption of divalent copper from aqueous solution by magnesium chloride co-doped Cicer arietinum husk biochar: Isotherm, kinetics, thermodynamic studies and response surface methodology. Bioresource Technology Reports, 18, 101004–101012.

    Article  CAS  Google Scholar 

  • Jacobson, A. T., & Fan, M. H. (2019). Evaluation of natural goethite on the removal of arsenate and selenite from water. Journal of Environmental Sciences (china), 76, 133–141.

    Article  Google Scholar 

  • Jain, M., Aiman Khan, S., Sahoo, A., Dubey, P., Kishore Pant, K., Maria Ziora, Z. & Blaskovich, M. A. T. (2022). Statistical evaluation of cow-dung derived activated biochar for phenol adsorption: Adsorption isotherms, kinetics, and thermodynamic studies. Bioresource Technology, 127030–127040.

  • Kloster, G. A., Valiente, M., Marcovich, N. E., & Mosiewicki, M. A. (2020). Adsorption of arsenic onto films based on chitosan and chitosan/nano-iron oxide. International Journal of Biological Macromolecules, 165, 1286–1295.

    Article  CAS  Google Scholar 

  • Kumar, A., & Bhattacharya, T. (2021). Removal of arsenic by wheat straw biochar from soil. Bulletin of Environmental Contamination and Toxicology, 108, 415–422.

    Article  CAS  Google Scholar 

  • Lapham, D. P., & Lapham, J. L. (2019). Gas adsorption on commercial magnesium stearate: The origin of atypical isotherms and BET transform data. Powder Technology, 342, 676–689.

    Article  CAS  Google Scholar 

  • Lee, S. Y., Chang, B. S., Kim, Y., Jang, H., & Lee, Y. J. (2022). Characterization of arsenite (As(III)) and arsenate (As(V)) sorption on synthetic siderite spherules under anoxic conditions: Different sorption behaviors with crystal size and arsenic species. Journal of Colloid and Interface Science, 613, 499–514.

    Article  CAS  Google Scholar 

  • Lin, L. N., Qiu, W. W., Wang, D., Huang, Q., Song, Z. G., & Chau, H. W. (2017). Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: Characterization and mechanism. Ecotoxicology and Environmental Safety, 144, 514–521.

    Article  CAS  Google Scholar 

  • Liu, C. H., Chuang, Y. H., Chen, T. Y., Tian, Y., Li, H., Wang, M. K., & Zhang, W. (2015). Mechanism of arsenic adsorption on magnetite nanoparticles from water: Thermodynamic and spectroscopic studies. Environmetal and Science Technology, 49, 7726–7734.

    Article  CAS  Google Scholar 

  • Ma, L., Cai, D. M., & Tu, S. X. (2020). Arsenite simultaneous sorption and oxidation by natural ferruginous manganese ores with various ratios of Mn/Fe. Chemical Engineering Journal, 382, 123040–123051.

    Article  CAS  Google Scholar 

  • Maity, J. P., Ho, P. R., Huang, Y. H., Sun, A. C., Chen, C. C., & Chen, C. Y. (2019). The removal of arsenic from arsenic-bearing groundwater in in-situ and ex-situ environment using novel natural magnetic rock material and synthesized magnetic material as adsorbent: A comparative assessment. Environmental Pollution, 253, 768–778.

    Article  CAS  Google Scholar 

  • Mertens, J., Rose, J., Kagi, R., Chaurand, P., Plotze, M., Wehrli, B., & Furrer, G. (2012). Adsorption of arsenic on polyaluminum granulate. Environmental and Science Technology, 46, 7310–7317.

    Article  CAS  Google Scholar 

  • Nazari, A. M., Radzinski, R., & Ghahreman, A. (2017). Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic. Hydrometallurgy, 174, 258–281.

    Article  CAS  Google Scholar 

  • Nguyen, T. H., Tran, H. N., Nguyen, T. V., Vigneswaran, S., Trinh, V. T., Nguyen, T. D., Ha Nguyen, T. H., Mai, T. N., & Chao, H. P. (2022). Single-step removal of arsenite ions from water through oxidation-coupled adsorption using Mn/Mg/Fe layered double hydroxide as catalyst and adsorbent. Chemosphere, 295, 133370–133384.

    Article  CAS  Google Scholar 

  • Nguyen, T. T. Q., Loganathan, P., Nguyen, T. V., & Vigneswaran, S. (2020). Removing arsenic from water with an original and modified natural manganese oxide ore: Batch kinetic and equilibrium adsorption studies. Environmental Science and Pollution Research International, 27, 5490–5502.

    Article  CAS  Google Scholar 

  • Niazi, N. K., Bibi, I., Shahid, M., Ok, Y. S., Shaheen, S. M., Rinklebe, J., Wang, H. L., Murtaza, B., Islam, E., Farrakh Nawaz, M., & Luttge, A. (2018). Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques. Science and Total Environment, 621, 1642–1651.

    Article  CAS  Google Scholar 

  • Perez, J. P. H., Schiefler, A. A., Rubio, S. N., Reischer, M., Overheu, N. D., Benning, L. G., & Tobler, D. J. (2021). Arsenic removal from natural groundwater using “green rust”: Solid phase stability and contaminant fate. Journal of Hazardous Materials, 401, 123327–123338.

    Article  CAS  Google Scholar 

  • Pi, K. F., Xie, X. J., Ma, T., Su, C. L., Li, J. X., & Wang, Y. X. (2020). Arsenic immobilization by in-situ iron coating for managed aquifer rehabilitation. Water Research, 181, 115859–115869.

    Article  CAS  Google Scholar 

  • Rahman, M. A., Lamb, D., Rahman, M. M., Bahar, M. M., Sanderson, P., Abbasi, S., Bari, A., & Naidu, R. (2021). Removal of arsenate from contaminated waters by novel zirconium and zirconium-iron modified biochar. Journal of Hazardous Material, 409, 124488–124502.

    Article  CAS  Google Scholar 

  • Rahman, M. A., Rahman, A., Khan, M. Z. K., & Renzaho, A. M. N. (2018). Human health risks and socio-economic perspectives of arsenic exposure in Bangladesh: A scoping review. Ecotoxicology and Environmetal Safety, 150, 335–343.

    Article  CAS  Google Scholar 

  • Reid, M. S., Hoy, K. S., Schofield, J. R. M., Uppal, J. S., Lin, Y. W., Lu, X. F., Peng, H. Y., & Le, X. C. (2020). Arsenic speciation analysis: A review with an emphasis on chromatographic separations. TrAC Trends in Analytical Chemistry, 123, 115770–115784.

    Article  CAS  Google Scholar 

  • Reis, V. A. T., & Duarte, A. C. (2018). Analytical methodologies for arsenic speciation in macroalgae: A critical review. TrAC Trends in Analytical Chemistry, 102, 170–184.

    Article  CAS  Google Scholar 

  • Saifullah, Dahlawi, S., Naeem, A., Iqbal, M., Farooq, M. A., Bibi, S., & Rengel, Z. (2018). Opportunities and challenges in the use of mineral nutrition for minimizing arsenic toxicity and accumulation in rice: A critical review. Chemosphere, 194, 171–188.

    Article  CAS  Google Scholar 

  • Schaefer, M. V., Plaganas, M., Abernathy, M. J., Aiken, M. L., Garniwan, A., Lee, I., & Ying, S. C. (2020). Manganese, arsenic, and carbonate interactions in model oxic groundwater systems. Environmental and Science Technology, 54, 10621–10629.

    Article  CAS  Google Scholar 

  • Siddiq, O. M., Tawabini, B. S., Soupios, P., & Ntarlagiannis, D. (2021). Removal of arsenic from contaminated groundwater using biochar: A technical review. International Journal of Environmental Science and Technology, 19, 651–664.

    Article  CAS  Google Scholar 

  • Stolze, L., Zhang, D., Guo, H., & Rolle, M. (2019). Surface complexation modeling of arsenic mobilization from goethite: Interpretation of an in-situ experiment. Geochimica Et Cosmochimica Acta, 248, 274–288.

    Article  CAS  Google Scholar 

  • Su, R., Ma, X., Yin, X. L., Zhao, X. M., Yan, Z. L., Lin, J. R., Zeng, X. F., Zhang, D. N., Wang, S. F., & Jia, Y. F. (2021). Arsenic removal from hydrometallurgical waste sulfuric acid via scorodite formation using siderite (FeCO3). Chemical Engineering Journal, 424, 130552–130562.

    Article  CAS  Google Scholar 

  • Sun, D. Z., Li, F. Y., Jin, J. M., Khan, S., Eltohamy, K. M., He, M. M., & Liang, X. Q. (2022). Qualitative and quantitative investigation on adsorption mechanisms of Cd(II) on modified biochar derived from co-pyrolysis of straw and sodium phytate. Science of Total Environment, 829, 154599–154610.

    Article  CAS  Google Scholar 

  • Sun, F. W., Liu, H. B., Wang, H. L., Shu, D. B., Chen, T. H., Zou, X. H., Huang, F. J., & Chen, D. (2020). A novel discovery of a heterogeneous Fenton-like system based on natural siderite: A wide range of pH values from 3 to 9. Science of Total Environment, 698, 134293–134304.

    Article  CAS  Google Scholar 

  • Suriyagoda, L. D. B., Dittert, K., & Lambers, H. (2018). Mechanism of arsenic uptake, translocation and plant resistance to accumulate arsenic in rice grains. Agriculture, Ecosystems & Environment, 253, 23–37.

    Article  CAS  Google Scholar 

  • Tang, Q., Shi, C. H., Shi, W. M., Huang, X. L., Ye, Y. Y., Jiang, W., Kang, J. X., Liu, D. Q., Ren, Y. Z., & Li, D. S. (2019). Preferable phosphate removal by nano-La(III) hydroxides modified mesoporous rice husk biochars: Role of the host pore structure and point of zero charge. Science of Total Environment, 662, 511–520.

    Article  CAS  Google Scholar 

  • Vinayagam, R., Patnaik, Y., Brijesh, P., Prabhu, D., Quadras, M., Pai, S., Narasimhan, M. K., Kaviyarasu, K., Varadavenkatesan, T., & Selvaraj, R. (2022). Superparamagnetic hematite spheroids synthesis, characterization, and catalytic activity. Chemosphere, 294, 133730–133737.

    Article  CAS  Google Scholar 

  • Vithanage, M., Herath, I., Joseph, S., Bundschuh, J., Bolan, N., Ok, Y. S., Kirkham, M. B., & Rinklebe, J. (2017). Interaction of arsenic with biochar in soil and water: A critical review. Carbon, 113, 219–230.

    Article  CAS  Google Scholar 

  • Wang, H. W., Tsang, Y. F., Wang, Y.-N., Sun, Y. J., Zhang, D. Y., & Pan, X. L. (2018a). Adsorption capacities of poorly crystalline Fe minerals for antimonate and arsenate removal from water: Adsorption properties and effects of environmental and chemical conditions. Clean Technologies and Environmental Policy, 20, 2169–2179.

    Article  CAS  Google Scholar 

  • Wang, Z., Guo, H. M., Xiu, W., Wang, J., & Shen, M. M. (2018b). High arsenic groundwater in the Guide basin, northwestern China: Distribution and genesis mechanisms. Science of Total Environment, 640–641, 194–206.

    Article  CAS  Google Scholar 

  • Wen, Z. P., Xi, J. B., Lu, J., Zhang, Y. L., Cheng, G., Zhang, Y. H., & Chen, R. (2021). Porous biochar-supported MnFe2O4 magnetic nanocomposite as an excellent adsorbent for simultaneous and effective removal of organic/inorganic arsenic from water. Journal of Hazardous Material, 411, 124909–124921.

    Article  CAS  Google Scholar 

  • Yan, C. S., Gao, H. Y., Gong, L. L., Ma, L. F., Dang, L. L., Zhang, L., Meng, P. P., & Luo, F. (2016). MOF surface method for the ultrafast and one-step generation of metal-oxide-NP@MOF composites as lithium storage materials. Journal of Materials Chemistry A, 4, 13603–13610.

    Article  CAS  Google Scholar 

  • Yang, Z. L., Xiu, W., Guo, H. M., & Li, F. L. (2017). Arsenate removal from aqueous solution by siderite synthesized under high temperature and high pressure. Environmental Science and Pollution Research International, 24, 19402–19411.

    Article  CAS  Google Scholar 

  • Yao, D. K., Shi, Y., Pan, H., Zhong, D. L., Hou, H. J., Wu, X. H., Chen, J., Wang, L. L., Hu, Y. F., & Crittenden, J. C. (2020). Promotion mechanism of natural clay colloids in the adsorption of arsenite on iron oxide particles in water. Chemical Engineering Journal, 392, 123637–123647.

    Article  CAS  Google Scholar 

  • Zaid, O. F., El-Said, W. A., Yousif, A. M., Galhoum, A. A., Elshehy, E. A., Ibrahim, I. A., & Guibal, E. (2020). Synthesis of microporous nano-composite (hollow spheres) for fast detection and removal of As(V) from contaminated water. Chemical Engineering Journal, 390, 124439–124452.

    Article  CAS  Google Scholar 

  • Zhang, D., Guo, H. M., Xiu, W., Ni, P., Zheng, H., & Wei, C. (2017). In-situ mobilization and transformation of iron oxides-adsorbed arsenate in natural groundwater. Journal of Hazardous Material, 321, 228–237.

    Article  CAS  Google Scholar 

  • Zhang, J. J., Liu, N., Gong, H. X., Chen, Q. B., & Liu, H. L. (2022). Hydroxyl-functionalized hypercrosslinked polymers with ultrafast adsorption rate as an efficient adsorbent for phenol removal. Microporous and Mesoporous Materials, 18, 111836–111844.

    Article  CAS  Google Scholar 

  • Zhang, Z., Guo, H. M., Liu, S., Weng, H. C., Han, S. B., & Gao, Z. P. (2020). Mechanisms of groundwater arsenic variations induced by extraction in the western Hetao Basin, Inner Mongolia, China. Journal of Hydrology, 583, 124599–124612.

    Article  CAS  Google Scholar 

  • Zhao, K., & Guo, H. M. (2014). Behavior and mechanism of arsenate adsorption on activated natural siderite: Evidences from FTIR and XANES analysis. Environmental Science and Pollution Research International, 21, 1944–1953.

    Article  CAS  Google Scholar 

  • Zhao, K., Guo, H. M., & Zhou, X. Q. (2014). Adsorption and heterogeneous oxidation of arsenite on modified granular natural siderite: Characterization and behaviors. Applied Geochemistry, 48, 184–192.

    Article  CAS  Google Scholar 

  • Zhao, Y., & Li, J. M. (2022). Effect of varying pH and co-existing microcystin-LR on time- and concentration-dependent cadmium sorption by goethite-modified biochar derived from distillersʼ grains. Environmental Pollution, 307, 119490–119499.

    Article  CAS  Google Scholar 

  • Zhou, S. W., Zhang, D. X., Wang, H. Y., & Li, X. H. (2019). A modified BET equation to investigate supercritical methane adsorption mechanisms in shale. Marine and Petroleum Geology, 105, 284–292.

    Article  CAS  Google Scholar 

  • Zou, S. W., Koh, K. Y., Chen, Z. H., Wang, Y. Y., Chen, J. P., & Zheng, Y. M. (2022). Adsorption of organic and inorganic arsenic from aqueous solution: Optimization, characterization and performance of Fe-Mn-Zr ternary magnetic sorbent. Chemosphere, 288, 132634–132642.

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the National Natural Science Foundation of China (grant Nos. 42130509 and 41825017), 111 project (No. B20010), and the Fundamental Research Funds for the Central Universities (grant No. 2652020623).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaming Guo.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 174 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Guo, H. & Hou, C. Removal of Arsenate from Aqueous Solution by Synthetic Siderite-Modified Biochar: Characteristics and Mechanisms. Water Air Soil Pollut 233, 278 (2022). https://doi.org/10.1007/s11270-022-05750-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05750-2

Keywords

Navigation