Skip to main content
Log in

A Needle Extraction Device Packed with Molecularly Imprinted Polymer Functionalized Fiber for the Determination of Polycyclic Aromatic Hydrocarbon in Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbon (PAHs) is an important organic contaminant substance in the environment. Their concentration monitoring is of great significance for predicting the potential environmental risk and protecting the organism safety. Here, molecularly imprinted polymers (MIPs) coating was prepared on zylon heat-resistant fiber by in situ polymerization, which was packed to a stainless steel needle to develop a needle-type device (NTD) for the analysis of PAHs. Pyrene was used as the template molecule in this MIPs. To obtain excellent selectivity and adsorption efficiency, 4-vinylpyridine (4-VP) and ethylene glycol dimethacrylate (EDMA) were chosen as functional monomers and cross-linker, respectively, and the ratio of ingredients was optimized. The scanning electron microscope (SEM) was used for identifying micro-morphologic characteristics of the obtained MIPs-coating fiber. The PAHs from environmental water samples were extracted with the NTD by headspace extraction and detected by gas chromatography with a flame ionization detector (GC-FID). Under optimized conditions, the proposed method exhibited a good linearity dynamic range (LDR) of 0.5–1800 µg·L−1 with the correlation coefficients (R2) between 0.9953 and 0.9977. The limits of detection are in the ranges of 0.09–0.40 µg·L−1 and the limits of quantification are in the ranges of 0.37–1.40 µg·L−1. Furthermore, the device showed remarkable durability and storage capacity. It could be reused 60 times, and the loss ratio was less than 15% with relative standard deviations (RSDs) less than 6.4% after 3 days of storage. The developed method is easy, sensitive, and accurate, and it can be used for detection of trace PAHs in water sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Code Availability

Not applicable.

Abbreviations

PAHs:

Polycyclic aromatic hydrocarbons

MIPs:

Molecularly imprinted polymers

NTD:

Needle-type device

PYR:

Pyrene

4-VP:

4-Vinylpyridine

EDMA:

Ethylene glycol dimethacrylate

MMA:

Methyl methacrylate

TFMAA:

Trifluoromethacrylic acid

NAP:

Naphthalene

ACE:

Acenaphthene

FLU:

Fluorene

PHE:

Phenanthrene

AIBN:

Azobisisobutyronitrile

DVB:

Divinylbenzene

References

  • Arabi, M., Ghaedi, M., & Ostovan, A. (2017). Synthesis and application of in-situ molecularly imprinted silica monolithic in pipette-tip solid-phase microextraction for the separation and determination of gallic acid in orange juice samples. Journal of Chromatogrphy B, 1048, 102–110. https://doi.org/10.1016/j.jchromb.2017.02.016

    Article  CAS  Google Scholar 

  • Bak, S. M., Nakata, H., Koh, D. H., Yoo, J., Iwata, H., & Kim, E. Y. (2019). In vitro and in silico AHR assays for assessing the risk of heavy oil-derived polycyclic aromatic hydrocarbons in fish. Ecotoxicology and Environmental Safety, 181, 214–223. https://doi.org/10.1016/j.ecoenv.2019.06.008

    Article  CAS  Google Scholar 

  • BelBruno, J. J. (2019). Molecularly imprinted polymers. Chemical Reviews, 119, 94–119. https://doi.org/10.1021/acs.chemrev.8b00171

    Article  CAS  Google Scholar 

  • Camus, L., Brooks, S., Geraudie, P., Hjorth, M., Nahrgang, J., Olsen, G. H., & Smit, M. G. (2015). Comparison of produced water toxicity to Arctic and temperate species. Ecotoxicology and Environmental Safety, 113, 248–258. https://doi.org/10.1016/j.ecoenv.2014.12.007

    Article  CAS  Google Scholar 

  • Chopra, S., Ridley, L., Murphy, W. R., Sowa, J. R., Jr., Bentivegna, C. S., & Snow, N. H. (2019). Quantitative analysis of polycyclic aromatic hydrocarbons at part per billion levels in fish oil by headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS). Journal of Chromatographic Science, 57, 87–92. https://doi.org/10.1093/chromsci/bmy086

    Article  CAS  Google Scholar 

  • Dalvand, K., & Ghiasvand, A. (2019). Simultaneous analysis of PAHs and BTEX in soil by a needle trap device coupled with GC-FID and using response surface methodology involving Box-Behnken design. Analytica Chimica Acta, 1083, 119–129. https://doi.org/10.1016/j.aca.2019.07.063

    Article  CAS  Google Scholar 

  • Fernandez-Amado, M., Prieto-Blanco, M. C., Lopez-Mahia, P., Muniategui-Lorenzo, S., & Prada-Rodriguez, D. (2016). A novel and cost-effective method for the determination of fifteen polycyclic aromatic hydrocarbons in low volume rainwater samples. Talanta, 155, 175–184. https://doi.org/10.1016/j.talanta.2016.04.032

    Article  CAS  Google Scholar 

  • Heidari, M., Bahrami, A., Ghiasvand, A. R., Shahna, F. G., & Soltanian, A. R. (2013). A needle trap device packed with a sol-gel derived, multi-walled carbon nanotubes/silica composite for sampling and analysis of volatile organohalogen compounds in air. Analytica Chimica Acta, 785, 67–74. https://doi.org/10.1016/j.aca.2013.04.057

    Article  CAS  Google Scholar 

  • Heidari, N., Ghiasvand, A., & Abdolhosseini, S. (2017). Amino-silica/graphene oxide nanocomposite coated cotton as an efficient sorbent for needle trap device. Analytica Chimica Acta, 975, 11–19. https://doi.org/10.1016/j.aca.2017.04.031

    Article  CAS  Google Scholar 

  • Huang, Y., Zhou, Q., & Xie, G. (2011). Development of micro-solid phase extraction with titanate nanotube array modified by cetyltrimethylammonium bromide for sensitive determination of polycyclic aromatic hydrocarbons from environmental water samples. Journal of Hazardous Materials, 193, 82–89. https://doi.org/10.1016/j.jhazmat.2011.07.025

    Article  CAS  Google Scholar 

  • Jing, L., Chen, B., Zhang, B., & Li, P. (2015). Process simulation and dynamic control for marine oily wastewater treatment using UV irradiation. Water Research, 81, 101–112. https://doi.org/10.1016/j.watres.2015.03.023

    Article  CAS  Google Scholar 

  • Kedziora-Koch, K., & Wasiak, W. (2018). Needle-based extraction techniques with protected sorbent as powerful sample preparation tools to gas chromatographic analysis: Trends in application. Journal of Chromatography A, 1565, 1–18. https://doi.org/10.1016/j.chroma.2018.06.046

    Article  CAS  Google Scholar 

  • Kedziora, K., & Wasiak, W. (2017). Extraction media used in needle trap devices-Progress in development and application. Journal of Chromatography A, 1505, 1–17. https://doi.org/10.1016/j.chroma.2017.05.030

    Article  CAS  Google Scholar 

  • Koltsakidou, A., Zacharis, C. K., & Fytianos, K. (2015). A validated liquid chromatographic method for the determination of polycyclic aromatic hydrocarbons in honey after homogeneous liquid-liquid extraction using hydrophilic acetonitrile and sodium chloride as mass separating agent. Journal of Chromatography A, 1377, 46–54. https://doi.org/10.1016/j.chroma.2014.12.039

    Article  CAS  Google Scholar 

  • Krupadam, R. J., Khan, M. S., & Wate, S. R. (2010). Removal of probable human carcinogenic polycyclic aromatic hydrocarbons from contaminated water using molecularly imprinted polymer. Water Research, 44, 681–688. https://doi.org/10.1016/j.watres.2009.09.044

    Article  CAS  Google Scholar 

  • Lai, J. P., Niessner, R., & Knopp, D. (2004). Benzo[a]pyrene imprinted polymers: Synthesis, characterization and SPE application in water and coffee samples. Analytica Chimica Acta, 522, 137–144. https://doi.org/10.1016/j.aca.2004.07.003

    Article  CAS  Google Scholar 

  • Lamichhane, S., Bal Krishna, K. C., & Sarukkalige, R. (2016). Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review. Chemosphere, 148, 336–353. https://doi.org/10.1016/j.chemosphere.2016.01.036

    Article  CAS  Google Scholar 

  • Li, F., Gao, J., Li, X., Li, Y., He, X., Chen, L., & Zhang, Y. (2019). Preparation of magnetic molecularly imprinted polymers functionalized carbon nanotubes for highly selective removal of aristolochic acid. J Chromatogr A, 1602, 168–177.

    Article  CAS  Google Scholar 

  • Liaud, C., Millet, M., & Le Calve, S. (2015). An analytical method coupling accelerated solvent extraction and HPLC-fluorescence for the quantification of particle-bound PAHs in indoor air sampled with a 3-stages cascade impactor. Talanta, 131, 386–394. https://doi.org/10.1016/j.talanta.2014.05.027

    Article  CAS  Google Scholar 

  • Liu, B., Chen, B., Zhang, B., Song, X., Zeng, G., & Lee, K. (2021). Photocatalytic ozonation of offshore produced water by TiO2 nanotube arrays coupled with UV-LED irradiation. Journal of Hazardous Materials, 402, 123456. https://doi.org/10.1016/j.jhazmat.2020.123456

    Article  CAS  Google Scholar 

  • Liu, B., Chen, B., Zhang, B. Y., Jing, L., Zhang, H. & Lee, K. (2016). Photocatalytic degradation of polycyclic aromatic hydrocarbons in offshore produced water: Effects of water matrix, Journal of Environmental Engineering, 142. https://doi.org/10.1061/(asce)ee.1943-7870.0001135

  • Lou, D., Chen, H., Wang, X., Lian, L., Zhu, B., Yang, Q., Guo, T., Li, Q., Wang, R., & Guo, X. (2016). Preparation and application of a coated-fiber needle extraction device. Journal Separation Science, 39, 3769–3774. https://doi.org/10.1002/jssc.201600410

    Article  CAS  Google Scholar 

  • Lubeck, J. S., Malmquist, L. M. V., & Christensen, J. H. (2019). Supercritical fluid chromatography for the analysis of oxygenated polycyclic aromatic compounds in unconventional oils. Journal of Chromatography A, 1589, 162–172. https://doi.org/10.1016/j.chroma.2018.12.056

    Article  CAS  Google Scholar 

  • Ma, W., An, Y., & Row, K. H. (2019). Preparation and evaluation of a green solvent-based molecularly imprinted monolithic column for the recognition of proteins by high-performance liquid chromatography. Analyst, 144, 6327–6333. https://doi.org/10.1039/c9an01259a

    Article  CAS  Google Scholar 

  • Maleki, S., Hashemi, P., Rasolzadeh, F., Maleki, S., & Ghiasvand, A. R. (2018). A needle trap device packed with nanoporous silica sorbents for separation and gas chromatographic determination of polycyclic aromatic hydrocarbons in contaminated soils. Journal of Chromatographic Science, 56, 771–778. https://doi.org/10.1093/chromsci/bmy056

    Article  CAS  Google Scholar 

  • Ncube, S., Kunene, P., Tavengwa, N. T., Tutu, H., Richards, H., Cukrowska, E., & Chimuka, L. (2017). Synthesis and characterization of a molecularly imprinted polymer for the isolation of the 16 US-EPA priority polycyclic aromatic hydrocarbons (PAHs) in solution. Journal of Environmental Management, 199, 192–200. https://doi.org/10.1016/j.jenvman.2017.05.041

    Article  CAS  Google Scholar 

  • Peng, X., Sun, X., Yu, M., Fu, W., Chen, H., & Chen, J. (2019). Chronic exposure to environmental concentrations of phenanthrene impairs zebrafish reproduction. Ecotoxicology and Environmental Safety, 182, 109376. https://doi.org/10.1016/j.ecoenv.2019.109376

    Article  CAS  Google Scholar 

  • Pfannkoch, E. A., Stuff, J. R., Whitecavage, J. A., Blevins, J. M., Seely, K. A., & Moran, J. H. (2015). A high throughput method for measuring polycyclic aromatic hydrocarbons in seafood using QuEChERS extraction and SBSE. International Journal of Analytical Chemistry, 2015, 359629. https://doi.org/10.1155/2015/359629

    Article  Google Scholar 

  • Poormohammadi, A., Bahrami, A., Farhadian, M., GhorbaniShahna, F., & Ghiasvand, A. (2017). Development of Carbotrap B-packed needle trap device for determination of volatile organic compounds in air. Journal of Chromatography A, 1527, 33–42. https://doi.org/10.1016/j.chroma.2017.10.062

    Article  CAS  Google Scholar 

  • Krupadam, Reddithota J., Bhagyashree, B., Wate, Satish R., Bodhe, Ghanshyam L., Borje, S., & Anjaneyulu, Yerramilli. (2009). Fluorescence spectrophotometer analysis of polycyclic aromatic hydrocarbons in environmental samples based on solid phase extraction using molecularly imprinted polymer. Environmental Science andTechnology, 43, 2871–2877. https://doi.org/10.1021/es802514c

    Article  CAS  Google Scholar 

  • Saito, Y., Imaizumi, M., Ban, K., Tahara, A., Wada, H., & Jinno, K. (2004). Development of miniaturized sample preparation with fibrous extraction media. Journal of Chromatography A, 1025, 27–32. https://doi.org/10.1016/j.chroma.2003.08.098

    Article  CAS  Google Scholar 

  • Santos, P. M., Del Nogal Sanchez, M., Perez Pavon, J. L., Cordero, B. M., & Fernandez, R. V. (2019). Liquid-liquid extraction-programmed temperature vaporizer-gas chromatography-mass spectrometry for the determination of polycyclic aromatic hydrocarbons in saliva samples. Application to the occupational exposure of firefighters. Talanta, 192, 69–78. https://doi.org/10.1016/j.talanta.2018.09.030

    Article  CAS  Google Scholar 

  • Song, X., Li, J., Xu, S., Ying, R., Ma, J., Liao, C., Liu, D., Yu, J., & Chen, L. (2012). Determination of 16 polycyclic aromatic hydrocarbons in seawater using molecularly imprinted solid-phase extraction coupled with gas chromatography-mass spectrometry. Talanta, 99, 75–82. https://doi.org/10.1016/j.talanta.2012.04.065

    Article  CAS  Google Scholar 

  • Speltini, A., Scalabrini, A., Maraschi, F., Sturini, M., & Profumo, A. (2017). Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: A review. Anal Chim Acta, 974, 1–26. https://doi.org/10.1016/j.aca.2017.04.042

    Article  CAS  Google Scholar 

  • Taghvaee, Z., Piravivanak, Z., Rezaei, K., & Faraji, M. (2015). Determination of polycyclic aromatic hydrocarbons (PAHs) in olive and refined pomace olive oils with modified low temperature and ultrasound-assisted liquid–liquid extraction method followed by the HPLC/FLD. Food Analytical Methods, 9, 1220–1227. https://doi.org/10.1007/s12161-015-0297-1

    Article  Google Scholar 

  • Ueta, I., Razak, N. A., Mizuguchi, A., Kawakubo, S., Saito, Y., & Jinno, K. (2013). Needle-type extraction device for the purge and trap analysis of 23 volatile organic compounds in tap water. Journal of Chromatography A, 1317, 211–216. https://doi.org/10.1016/j.chroma.2013.07.011

    Article  CAS  Google Scholar 

  • Warren, J. M., & Pawliszyn, J. (2011). Development and evaluation of needle trap device geometry and packing methods for automated and manual analysis. Journal of Chromatography A, 1218, 8982–8988. https://doi.org/10.1016/j.chroma.2011.10.017

    Article  CAS  Google Scholar 

  • Yan, H., & Row, H. (2006). Characteristic and synthetic approach of molecularly imprinted polymer. International Journal of Molecular Sciences, 7, 155–178. https://doi.org/10.3390/i7050155

    Article  CAS  Google Scholar 

  • Yu, Y., Wang, X., Wang, B., Tao, S., Liu, W., Wang, X., Cao, J., Li, B., Lu, X., & Wong, M. H. (2011). Polycyclic aromatic hydrocarbon residues in human milk, placenta, and umbilical cord blood in Beijing, China. Environmental Science & Technology, 45, 10235–10242. https://doi.org/10.1021/es202827g

    Article  CAS  Google Scholar 

  • Yuan, Y., Lin, X., Li, T., Pang, T., Dong, Y., Zhuo, R., Wang, Q., Cao, Y., & Gan, N. (2019). A solid phase microextraction arrow with zirconium metal-organic framework/molybdenum disulfide coating coupled with gas chromatography-mass spectrometer for the determination of polycyclic aromatic hydrocarbons in fish samples. Journal of Chromatography A, 1592, 9–18. https://doi.org/10.1016/j.chroma.2019.01.066

    Article  CAS  Google Scholar 

  • Zhang, X., Chen, J., Lian, L., Wang, X., Guo, X., Chen, H., Zhu, B., Hou, S., & Lou, D. (2019). Preparation and application of needle extraction device packed with sol–gel-derived perhydroxy cucurbit[6]uril coating fiber. Chromatographia, 82, 953–960. https://doi.org/10.1007/s10337-019-03720-1

    Article  CAS  Google Scholar 

  • Zheng J., Liu, B., Ping, J., Chen, B., Wu, H. & Zhang, B. (2015). Vortex- and shaker-assisted liquid–liquid microextraction (VSA-LLME) coupled with gas chromatography and mass spectrometry (GC-MS) for analysis of 16 polycyclic aromatic hydrocarbons (PAHs) in offshore produced water. Water, Air, & Soil Pollution, 226. https://doi.org/10.1007/s11270-015-2575-3

  • Zhou, D. B., Sheng, X., Han, F., Hu, Y. Y., Ding, L., Lv, Y. L., Song, W. & Zheng, P. (2018). Magnetic solid-phase extraction based on [60]fullerene functionalization of magnetic nanoparticles for the determination of sixteen polycyclic aromatic hydrocarbons in tea samples. Journal of Chromatography A, 1578, 53-60. https://doi.org/10.1016/j.chroma.2018.10.010

Download references

Funding

This investigation was supported by the Project of Science and Technology Development of Jilin Province (no. 20190303116SF and no. 202002008JC), the Research and Development Project for Industrial Technology of Jilin Province (no. 2020C028-1), the Talents Project for Innovation and Entrepreneurship of Jilin province (no. 2020030), the Project of Science and Technology of the Education Department of Jilin Province (no. JJKH20210242KJ), and the Natural Science Foundation of Jilin Province (grant number 20180101292JC). The financial support from the Key Laboratory of Fine Chemicals of Jilin Province is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiyue Wang or Dawei Lou.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, B., Zhang, X., Wang, X. et al. A Needle Extraction Device Packed with Molecularly Imprinted Polymer Functionalized Fiber for the Determination of Polycyclic Aromatic Hydrocarbon in Water. Water Air Soil Pollut 233, 21 (2022). https://doi.org/10.1007/s11270-021-05471-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05471-y

Keywords

Navigation