Skip to main content

Advertisement

Log in

Enhanced Absorption of Hg2+ by a Recyclable Thiol-Functionalized Salix Psammophila

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

To solve the heavy metal water contamination problem of mercury ions, salix psammophila (SPP) powder was functionalized by thiol to prepare a novel adsorbent (TSPP). The materials were characterized by scanning electron microscope (SEM), Fourier-transform infrared (FTIR), energy-dispersive spectroscopy (EDS), thermogravimetry (TG), and X-ray photoelectron spectroscopy (XPS). The maximum adsorption capacity of TSPP was 1615.1 mgg−1 in 60 min (pH = 2, temperature 45 ℃, Hg2+ concentration = 700 mgL−1). The adsorption of Hg2+ by TSPP conforms to the pseudo-secondary kinetic model and Langmuir isotherm model. The adsorption process of Hg2+ mainly includes ion exchange of -COOH, electrostatic attraction of -NH, electron transfer of -NH2, and chelation of sulfhydryl group and other functional groups. In addition, TSPP still has a high adsorption capacity of 1547.5 mgg−1 after four recycling times, indicating that it can be used as a low-cost, high-economy, and environmentally friendly adsorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of Data and Material

Data in all figures are from the experimental results of this experiment.

References

  • Abdolkarim, F., Reza, M.-A. A., Badichi, A. F., Erich, K., Alexandra, K., & Uwe, S. (2021). Investigation of the unusually high rotational energy barrier about the C-N bond in 5-(2-x-phenyl)-N,N-dimethyl-2H-tetrazole-2-carboxamides: Insights from dynamic 1H-NMR and DFT calculations. Journal of Molecular Structure, 1226(PB).

  • Ali, I., & Gupta, V. K. (2006). Advances in water treatment by adsorption technology. Nature Protocols, 1(6), 2661–2667. https://doi.org/10.1038/nprot.2006.370

    Article  CAS  Google Scholar 

  • Anirudhan, T. S., Jalajamony, S., & Sreekumari, S. S. (2012). Adsorption of heavy metal ions from aqueous solutions by amine and carboxylate functionalised bentonites. Applied Clay Science, 65–66, 67–71. https://doi.org/10.1016/j.clay.2012.06.005

    Article  CAS  Google Scholar 

  • Babiarz, C. L., Hurley, J. P., Krabbenhoft, D. P., Gilmour, C., & Branfireun, B. A. (2003). Application of ultrafiltration and stable isotopic amendments to field studies of mercury partitioning to filterable carbon in lake water and overland runoff. Science of the Total Environment, 304(1–3), 295–303. https://doi.org/10.1016/s0048-9697(02)00576-4

    Article  CAS  Google Scholar 

  • Baiyan, L., Yiming, Z., Dingxuan, M., Zhan, S., & Shengqian, M. (2014). Mercury nano-trap for effective and efficient removal of mercury(II) from aqueous solution. Nature communications, 5.

  • Bakry, A. M., Awad, F. S., Bobb, J. A., & El-Shall, M. S. (2020). Multifunctional binding sites on nitrogen-doped carboxylated porous carbon for highly efficient adsorption of Pb(II), Hg(II), and Cr(VI) ions. ACS Omega, 5(51), 33090–33100. https://doi.org/10.1021/acsomega.0c04695

    Article  CAS  Google Scholar 

  • Bao, J., Fu, Y., & Bao, Z. (2013). Thiol-functionalized magnetite/graphene oxide hybrid as a reusable adsorbent for Hg 2+ removal. Nanoscale Research Letters, 8(1).

  • Beckers, F., & Rinklebe, J. (2017). Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology, 47(9), 693–794. https://doi.org/10.1080/10643389.2017.1326277

    Article  CAS  Google Scholar 

  • Candelaria, T., Angel, V., Rodrigo, O., Humberto, M., & Fran, E. (2021). Potential use of residual sawdust of Eucalyptus globulus Labill in Pb (II) adsorption: Modelling of the kinetics and equilibrium. Applied Sciences, 11(7).

  • Dos Santos, D. A., Rudnitskaya, A., & Evtuguin, D. V. (2012). Modified kraft lignin for bioremediation applications. Journal of Environmental Science and Health. Part a, Toxic/hazardous Substances & Environmental Engineering, 47(2), 298–307. https://doi.org/10.1080/10934529.2012.640909

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., & Pirrone, N. (2013). Mercury as a global pollutant: Sources, pathways, and effects. Environmental Science and Technology, 47(10), 4967–4983. https://doi.org/10.1021/es305071v

    Article  CAS  Google Scholar 

  • Foo, K. Y., & Hameed, B. H. (2009). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1).

  • Genç-Fuhrman, H., Wu, P., Zhou, Y., & Ledin, A. (2007). Removal of As, Cd, Cr, Cu, Ni and Zn from polluted water using an iron based sorbent. Desalination, 226(1).

  • Gupta, V. K., Carrott, P. J. M., Ribeiro Carrott, M. M. L., & Suhas. (2009). Low-cost adsorbents: Growing approach to wastewater treatment—A review. Critical Reviews in Environmental Science and Technology, 39(10), 783–842. https://doi.org/10.1080/10643380801977610

    Article  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5).

  • Ifthikar, J., Jiao, X., Ngambia, A., Wang, T., Khan, A., Jawad, A., Xue, Q., Liu, L., & Chen, Z. (2018). Facile one-pot synthesis of sustainable carboxymethyl chitosan - Sewage sludge biochar for effective heavy metal chelation and regeneration. Bioresource Technology, 262, 22–31. https://doi.org/10.1016/j.biortech.2018.04.053

    Article  CAS  Google Scholar 

  • Jerosha, I., Xiang, J., Audrey, N., Ting, W., Aimal, K., Ali, J., Qiang, X., Lei, L., & Zhuqi, C. (2018). Facile one-pot synthesis of sustainable carboxymethyl chitosan - Sewage sludge biochar for effective heavy metal chelation and regeneration. Bioresource Technology, 262.

  • Jiaojiao, H., Xinglin, Y. a., Meng, L., & Li, W. (2020). Preparation of cellulose membrane with high adsorption capacity and its adsorption performance for Pb2+ FINE CHEMICALS, 37(02), 370–377,(in Chinese).

  • Jiaqi, H., & Li, W. (2018). Preparation and adsorption of carboxymethyl salix psammophila powder. NEW CHEMICAL MATERIALS, 46(11), 278–281. (in Chinese).

    Google Scholar 

  • Kazemi, F., Younesi, H., Ghoreyshi, A. A., Bahramifar, N., & Heidari, A. (2016). Thiol-incorporated activated carbon derived from fir wood sawdust as an efficient adsorbent for the removal of mercury ion: Batch and fixed-bed column studies. Process Safety and Environmental Protection, 100, 22–35. https://doi.org/10.1016/j.psep.2015.12.006

    Article  CAS  Google Scholar 

  • Kuang, H., Yuancai, C., Zhenghua, T., & Yongyou, H. (2016). Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash. Environmental science and pollution research international, 23(3).

  • Kumar, P. T., Lakshmanan, V. K., Anilkumar, T. V., Ramya, C., Reshmi, P., Unnikrishnan, A. G., Nair, S. V., & Jayakumar, R. (2012). Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: In vitro and in vivo evaluation. ACS Applied Materials & Interfaces, 4(5), 2618–2629. https://doi.org/10.1021/am300292v

    Article  CAS  Google Scholar 

  • Le Faucheur, S., Vasiliu, D., Catianis, I., Zazu, M., Dranguet, P., Beauvais-Fluck, R., Loizeau, J. L., Cosio, C., Ungureanu, C., Ungureanu, V. G., & Slaveykova, V. I. (2016). Environmental quality assessment of reservoirs impacted by Hg from chlor-alkali technologies: Case study of a recovery. Environmental Science and Pollution Research International, 23(22), 22542–22553. https://doi.org/10.1007/s11356-016-7405-7

    Article  CAS  Google Scholar 

  • Liem-Nguyen, V., Skyllberg, U., Nam, K., & Björn, E. (2017). Thermodynamic stability of mercury(II) complexes formed with environmentally relevant low-molecular-mass thiols studied by competing ligand exchange and density functional theory. Environmental Chemistry, 14(4). https://doi.org/10.1071/en17062

  • Lingling, X., Na, W., & Ping, N. (2013). Preparation and properties of thiol-functionalized activated carbon for selective removal of mercury(II) ions. Modern Chemical Industry, 33(10), 70–75. (in Chinese).

    Google Scholar 

  • Liu, C., Zeng, S., Yang, B., Jia, F., & Song, S. (2019). Simultaneous removal of Hg 2+ , Pb 2+ and Cd 2+ from aqueous solutions on multifunctional MoS 2. Journal of Molecular Liquids, 296.

  • Liu, Z., Sun, Y., Xu, X., Meng, X., Qu, J., Wang, Z., Liu, C., & Qu, B. (2020). Preparation, characterization and application of activated carbon from corn cob by KOH activation for removal of Hg(II) from aqueous solution. Bioresource Technology, 306.

  • Machida, M., Fotoohi, B., Amamo, Y., Ohba, T., Kanoh, H., & Mercier, L. (2012). Cadmium(II) adsorption using functional mesoporous silica and activated carbon. Journal of Hazardous Materials, 221–222.

  • Musliu, A., Beqa, L., & Kastrati, G. (2021). The use of dental amalgam and amalgam waste management in Kosova: An environmental policy approach. Integrated Environmental Assessment and Management, 17(5), 1037–1044. https://doi.org/10.1002/ieam.4408

    Article  Google Scholar 

  • Na, L., Xin, S., Liang, G., Penghua, Y., & Zhihao, H. (2017). Simulating remediation of Hg(II)-contaminated groundwater using natural magnetite and commercial Fe3O4. Soils, 49(1), 118–128,(in Chinese).

  • Nickell, R. A., Zhu, W. H., Payne, R. U., Cahela, D. R., & Tatarchuk, B. J. (2006). Hg/HgO electrode and hydrogen evolution potentials in aqueous sodium hydroxide. Journal of Power Sources, 161(2), 1217–1224. https://doi.org/10.1016/j.jpowsour.2006.05.028

    Article  CAS  Google Scholar 

  • Obrist, D., Kirk, J. L., Zhang, L., Sunderland, E. M., Jiskra, M., & Selin, N. E. (2018). A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio, 47(2), 116–140. https://doi.org/10.1007/s13280-017-1004-9

    Article  CAS  Google Scholar 

  • Pankaj, A., Tewari, K., Singh, S., & Singh, S. P. (2018). Waste candle soot derived nitrogen doped carbon dots based fluorescent sensor probe: An efficient and inexpensive route to determine Hg(II) and Fe(III) from water. Journal of Environmental Chemical Engineering, 6(4).

  • Pulido-Novicio, L., Kurimoto, Y., Aoyama, M., Seki, K., Doi, S., Hata, T., Ishihara, S., & Imamura, Y. (2001). Adsorption of mercury by sugi wood carbonized at 1000°C. Journal of Wood Science, 47(2).

  • Rakhmonovich, T. K., Khudainazarovich, T. K., Anarovich, K. R., & Bozorovich, E. F. (2020). Isolation of forms toxic metals in natural waters by ion exchange method. ACADEMICIA: An International Multidisciplinary Research Journal, 10(1).

  • Ravichandran, M., Aiken, G. R., Ryan, J. N., & Reddy, M. M. (1999). Inhibition of precipitation and aggregation of metacinnabar (mercuric sulfide) by dissolved organic matter isolated from the florida everglades. Environmental Science & Technology, 33(09), 1418–1423.

    Article  CAS  Google Scholar 

  • Sajjadi, S. A., Mohammadzadeh, A., Tran, H. N., Anastopoulos, I., Dotto, G. L., Lopicic, Z. R., Sivamani, S., Rahmani-Sani, A., Ivanets, A., & Hosseini-Bandegharaei, A. (2018). Efficient mercury removal from wastewater by pistachio wood wastes-derived activated carbon prepared by chemical activation using a novel activating agent. Journal of Environmental Management, 223, 1001–1009. https://doi.org/10.1016/j.jenvman.2018.06.077

    Article  CAS  Google Scholar 

  • Senior, C. L., Sarofim, A. F., Zeng, T., Helble, J. J., & Mamani-Paco, R. (2000). Gas-phase transformations of mercury in coal-fired power plants. Fuel Processing Technology, 63(2).

  • Shafiekhani, H., Nezam, F., & Bahar, S. (2017). New optical sensor based on the immobilization of a triazene ligand in PVC membrane for Hg(II) ion. Journal of the Serbian Chemical Society, 82(3), 317–328. https://doi.org/10.2298/jsc160520093s

    Article  CAS  Google Scholar 

  • She, M., Wu, S., Wang, Z., Ma, S., Yang, Z., Yin, B., Liu, P., Zhang, S., & Li, J. (2017). Exploration of congeneric Hg(II)-mediated chemosensors driven by S-Hg affinity, and their application in living system. Sensors & Actuators: B. Chemical.

  • Simonin, J.-P. (2016). On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 300.

  • Smith, R. S., Wiederhold, J. G., & Kretzschmar, R. (2015). Mercury isotope fractionation during precipitation of metacinnabar (β-HgS) and montroydite (HgO). Environmental science & technology, 49(7).

  • Swain, E. B., Engstrom, D. R., Brigham, M. E., Henning, T. A., & Brezonik, P. L. (1992). Increasing rates of atmospheric mercury deposition in midcontinental North America. Science, 257(5071).

  • Tran, H. N., You, S.-J., & Chao, H.-P. (2015). Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar. Waste Management & Research: The Journal for a Sustainable Circular Economy, 34(2), 129–138. https://doi.org/10.1177/0734242x15615698

    Article  Google Scholar 

  • Ugrina, M., Čeru, T., Nuić, I., & Trgo, M. (2020). Comparative study of mercury(II) removal from aqueous solutions onto natural and iron-modified clinoptilolite rich zeolite. Processes, 8(11). https://doi.org/10.3390/pr8111523

  • Urgun-Demirtas, M., Benda, P. L., Gillenwater, P. S., Negri, M. C., Xiong, H., & Snyder, S. W. (2012). Achieving very low mercury levels in refinery wastewater by membrane filtration. Journal of Hazardous Materials, 215–216.

  • Wichaita, W., Samart, C., Yoosuk, B., & Kongparakul, S. (2015). Cellulose graft poly(acrylic acid) and polyacrylamide: Grafting efficiency and heavy metal adsorption performance. Macromolecular Symposia, 354(1).

  • Xu, R., Chen, M., Fang, T., & Chen, J. (2017). A new method for extraction and heavy metals removal of abalone visceral polysaccharide. Journal of Food Processing and Preservation, 41(4). https://doi.org/10.1111/jfpp.13023

  • yawen, M., & guilan, Z. (2013). Phenol liquefaction of salix psammophila and structure characterization. Journal of Northwest Forestry University, 28(04), 162–165. (in Chinese).

    Google Scholar 

  • Yi, T., Kaili, W., Qian, Y., Shifeng, Z., Jianzhang, L., & Yong, J. (2019). Synthesis of amino-functionalized waste wood flour adsorbent for high-capacity Pb(II) adsorption. ACS omega, 4(6).

  • Yu, C., & xin, Q. Y., Yanfeng, L., & Gangqiang, S. (2013). Synthesis of chelating resin with Schiff-base group based on polystyrenebead and adsorption properties for Hg(II). Journal of Northwest Forestry University, 29(03), 211–219. (in Chinese).

    CAS  Google Scholar 

  • Yulizar, Y., Foliatini, & Hafizah, M. A. E. (2019). A facile and effective technique for the synthesis of thiol-modified Au/alginate nanocomposite and its performance in stabilizing Pickering emulsion. Arabian Journal of Chemistry, 12(8).

  • Zhou, C. C., Gao, Z. Y., He, Y. Q., Wu, M. Q., Chen, F., Wang, J., Liu, J. X., & Yan, C. H. (2019). Effects of lead, mercury, aluminium and manganese co-exposure on the serum BDNF concentration of pre-school children in Taizhou, China. Chemosphere, 217, 158–165. https://doi.org/10.1016/j.chemosphere.2018.11.028

    Article  CAS  Google Scholar 

  • Zhu Y, Lin H, Feng Q, Zhao B, Lan W, Li T, Xue B, Li M, Zhang Z (2021).Sulfhydryl-modified SiO2 cryogel: A pH-insensitive and selective adsorbent for efficient removal of mercury in waters.Colloids and Surfaces a: Physicochemical and Engineering Aspects617https://doi.org/10.1016/j.colsurfa.2021.126382

Download references

Funding

This study was supported by the Inner Mongolia Autonomous Region Science and Technology Department Plan Project (2019GG018) and Natural Science Foundation of Inner Mongolia (2021MS02024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Ethics declarations

Ethics Approval

This study is in compliance with ethical standards.

Consent to Participate

All authors agreed with the content.

Consent for Publication

All authors agreed with the content.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Yang, X., Zhao, B. et al. Enhanced Absorption of Hg2+ by a Recyclable Thiol-Functionalized Salix Psammophila. Water Air Soil Pollut 233, 13 (2022). https://doi.org/10.1007/s11270-021-05408-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05408-5

Keywords

Navigation