Skip to main content

Advertisement

Log in

Runoff of Hexazinone and Diuron in Green Cane Systems

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Sugarcane is a major crop in Brazil as well as other tropical areas. The rise of green cane systems that maintain straw on the soil surface after mechanical harvesting alongside extreme precipitation has changed the use and environmental fate of pesticides, mainly herbicides. The goal of this research was to evaluate the effects of straw amounts (0, 7, and 14 t ha−1), soil water contents (10 and 18%, volumetric basis), and herbicide incubation time (0 and 3 days) on the runoff of hexazinone and diuron in green cane systems, under a heavy rainfall event of 120 mm that is becoming more frequent over the decades in tropical areas. A rainfall event of 80 mm h−1 during 1.5 h was simulated over a 1 m2 area, using a rainfall simulator with a structure designed to collect runoff. Herbicides in water runoff were determined by ultra performance liquid chromatography with mass spectrometry (UPLC ESI QTOF/MS), while herbicides attached to sediments were estimated using Kd values. Sugarcane straw on the soil surface decreased water, sediments, and diuron runoffs, but barely affected hexazinone losses. Crop residues cannot prevent runoff of highly soluble molecules, such as hexazinone. Herbicides’ runoffs were much higher in the aqueous phase and at higher soil moisture content. Maintaining 7 t ha−1 of sugarcane straw on the soil surface was enough to mitigate water, sediments, and diuron runoff, but 3-day herbicide incubation did not affect both herbicides runoffs. Diuron and hexazinone are heavily used herbicides that can reach concerning concentrations in the runoff and contaminate surface waters in vulnerable areas if no control measures are taken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Alister, C., Araya, M., & Kogan, M. (2011). Effects of physicochemical soil properties of five agricultural soils on herbicide soil adsorption and leaching. Ciencia e Investigación Agraria, 38, 243–251.

  • APHA (2017) Standard methods for the examination of water and wastewater. Washington, D.C: American Public Health Association, American Water Works Association and Water Environment Federation.

  • Araldi, R., Velini, E. D., Gomes, G. L. G. C., Tropaldi, L., Silva, I. P. F., & Carbonari, C. A. (2015). Performance of herbicides in sugarcane straw. Ciência Rural, 45, 2106–2112. https://doi.org/10.1590/0103-8478cr20141244.

    Article  CAS  Google Scholar 

  • Bainbridge, Z., Brodie, J., Faithful, J., Sydes, D., & Lewis, S. (2009). Identifying the land-based sources of suspended sediments, nutrients and pesticides discharged to the Great Barrier Reeffrom the Tully–Murray Basin, Queensland, Australia. Marine and Freshwater Research, 60, 1081–1090. https://doi.org/10.1071/MF08333.

    Article  CAS  Google Scholar 

  • Barbosa, A. M., Solano, M. L., & Umbuzeiro, G. A. (2015). Pesticides in drinking water - The Brazilian monitoring program. Frontiers in Public Health, 3, 246. https://doi.org/10.3389/fpubh.2015.00246.

    Article  Google Scholar 

  • Bordonal, R. O., Carvalho, J. L. N., Lal, R., de Figueiredo, E. B., de Oliveira, B. G., & La Scala, N. (2018). Sustainability of sugarcane production in Brazil. A review. Agronomy for Sustainable Development, 38, 13. https://doi.org/10.1007/s13593-018-0490-x.

    Article  Google Scholar 

  • Carvalho, J. L. N., Nogueirol, R. C., Menandro, L. M. S., Bordonal, R. O., Borges, C. D., Cantarella, H., & Franco, H. C. J. (2017). Agronomic and environmental implications of sugarcane straw removal: A major review. GCB Bioenergy, 9, 1181–1195. https://doi.org/10.1111/gcbb.12410.

    Article  CAS  Google Scholar 

  • Castioni, G. A., Cherubin, M. R., Menandro, L. M. S., Sanches, G. M., Bordonal, R. O., Barbosa, L. C., Franco, H. C. J., & Carvalho, J. L. N. (2018). Soil physical quality response to sugarcane straw removal in Brazil: A multi-approach assessment. Soil and Tillage Research, 184, 301–309.

    Article  Google Scholar 

  • Cherubin, M. R., Oliveira, D. M. S., Feigl, B. J., Pimentel, L. G., Lisboa, I. P., Gmach, M. R., Varanda, L. L., Morais, M. C., Satiro, L. S., Popin, G. V., Paiva, S. R., Santos, A. K. B., Vasconcelos, A. L. S., Melo, P. L. A., Cerri, C. E. P., & Cerri, C. C. (2018). Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review. Scientia Agricola, 75, 255–272. https://doi.org/10.1590/1678-992x-2016-0459.

    Article  CAS  Google Scholar 

  • Daam, M. A., Chelinho, S., Niemeyer, J. C., Olugbenga, J. O., Mangala, C. S. P., De Silva, J. P. S., Cornelis, A. M., van Gestel, J., & R. (2019). Environmental risk assessment of pesticides in tropical terrestrial ecosystems: Test procedures, current status and future perspectives. Ecotoxicology and Environmental Safety, 181, 534–547. https://doi.org/10.1016/j.ecoenv.2019.06.038.

    Article  CAS  Google Scholar 

  • Davis, A. M., Thorburn, P. J., Lewis, S. E., Bainbridge, Z. T., Attard, S. J., Milla, R., & Brodie, J. E. (2013). Environmental impacts of irrigated sugarcane production: Herbicide run-off dynamics from farms and associated drainage systems. Agriculture, Ecosystems & Environment, 180, 123–135. https://doi.org/10.1016/j.agee.2011.06.019.

    Article  Google Scholar 

  • Donnelly, C., Greuell, W., Andersson, J., Gerten, D., Pisacane, G., Roudier, P., & Ludwig, F. (2017). Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Climatic Change, 143, 13–26. https://doi.org/10.1007/s10584-017-1971-7.

    Article  Google Scholar 

  • Dores, E. F. G. C., Spadotto, C. A., Weber, O. L. S., Carbo, L., Vecchiato, A. B., & Pinto, A. A. (2008). Environmental Behaviour of Metolachlor and Diuron in a Tropical Soil in the Central Region of Brazil. Water, Air, and Soil Pollution, 197, 175–183. https://doi.org/10.1007/s11270-008-9801-1.

    Article  CAS  Google Scholar 

  • Faikrua, A., Pimonsree, S., Wang, L., Limsakul, A., Singhruck, P., Dong, Z. (2020). Decadal increase of the summer precipitation in Thailand after the mid-1990s. Climate Dynamics https://doi.org/10.1007/s00382-020-05443-8

  • FAOStat (2017) Rankings: Commodity by regions. Food and Agriculture Organization. http://www.fao.org/faostat/en/#data/QC/visualize. Accessed 07 March 2019

  • Gabiri, G., Diekkrüger, B., Näschen, K., Leemhuis, C., van der Linden, R., Majaliwa, J. G. M., & Obando, J. A. (2020). Impact of climate and land use/land cover change on the water resources of a tropical inland valley catchment in Uganda, East Africa. Climate, 8, 83. https://doi.org/10.3390/cli8070083.

    Article  Google Scholar 

  • Gao, J., Wang, Y., Gao, B., Wu, L., & Chen, H. (2012). Environmental fate and transport of pesticides. In H. S. Rathore & L. M. L. Nollet (Eds.), Pesticides: Evaluation of Environmental Pollution (pp. 29–48). New York: Taylor & Francis.

    Google Scholar 

  • Giacomazzi, S., & Cochet, N. (2004). Environmental impact of diuron transformation: A review. Chemosphere, 56, 1021–1032.

    Article  CAS  Google Scholar 

  • Giori, F. G., Tornisielo, V. L., Cerri, C. E. P., & Regitano, J. B. (2014a). Sugarcane straw management and soil attributes on alachlor and diuron sorption in highly weathered tropical soils. Journal of Environmental Science and Health, Part B, 49, 352–360. https://doi.org/10.1080/03601234.2014.882172.

    Article  CAS  Google Scholar 

  • Giori, F. G., Tornisielo, V. L., & Regitano, J. B. (2014b). The role of sugarcane residues in the sorption and leaching of herbicides in two tropical soils. Water, Air, & Soil Pollution, 225, 1935. https://doi.org/10.1007/s11270-014-1935-8.

    Article  CAS  Google Scholar 

  • Guimarães, A. C. D., Mendes, K. F., dos Reis, F. C., Campion, T. F., Christoffoleti, P. J., & Tornisielo, V. L. (2018). Role of soil physicochemical properties in quantifying the fate of diuron, hexazinone, and metribuzin. Environmental Science and Pollution Research, 25, 12419–12433.

    Article  Google Scholar 

  • Guimaraes, A., Mendes, K. F., Campion, T. F., Christoffoleti, P. J., Tornisielo, V. L. (2019). Leaching of herbicides commonly applied to sugarcane in five agricultural soils. Planta Daninha 37

  • Guo, L., Kelley, K., & Goh, K. S. (2007). Evaluation of sources and loading of pesticides to the Sacramento River, California, USA, during a storm event of winter 2005. Environmental Toxicology and Chemistry, 26, 2274–2281. https://doi.org/10.1897/06-653r.1.

    Article  CAS  Google Scholar 

  • IBAMA (2010) Pesticides and related products commercialized in Brazil in 2009 An environmental approach. Brasília, Brazil.

  • INMET (2020) Estação Meteorológica de Observação de Superfície Convencional. Instituto Nacional de Meteorologia. http://www.inmet.gov.br/portal/index.php?r=estacoes/estacoesConvencionais. Accessed 12 February 2020

  • Junior, J., Cherubin, M., Oliveira, B., Cerri, C. E., Cerri, C. C., Feigl, B. (2018). Three-Year Soil Carbon and Nitrogen Responses to Sugarcane Straw Management. BioEnergy Research doi:https://doi.org/10.1007/s12155-017-9892-x

  • Khalil, Y., Flower, K., Siddique, K. H., Ward, P. (2018). Effect of crop residues on interception and activity of prosulfocarb, pyroxasulfone, and trifluralin. Plos one 13

  • Landis, D. A. (2017). Designing agricultural landscapes for biodiversity-based ecosystem services. Basic and Applied Ecology, 18, 1–12.

    Article  Google Scholar 

  • Lewis, K. A., Tzilivakis, J., Warner, D., & Green, A. (2016). An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22, 1050–1064. https://doi.org/10.1080/10807039.2015.1133242.

    Article  CAS  Google Scholar 

  • Li, Z., & Fang, H. (2016). Impacts of climate change on water erosion: A review. Earth-Science Reviews, 163, 94–117. https://doi.org/10.1016/j.earscirev.2016.10.004.

    Article  Google Scholar 

  • Li, H., Shi, C., Zhang, Y., Ning, T., Sun, P., Liu, X., Ma, X., Liu, W., & Collins, A. L. (2020). Using the Budyko hypothesis for detecting and attributing changes in runoff to climate and vegetation change in the soft sandstone area of the middle Yellow River basin, China. Science of the Total Environment, 703, 135588. https://doi.org/10.1016/j.scitotenv.2019.135588.

    Article  CAS  Google Scholar 

  • Luetzenburg, G., Bittner, M. J., Calsamiglia, A., Renschler, C. S., Estrany, J., & Poeppl, R. (2020). Climate and land use change effects on soil erosion in two small agricultural catchment systems Fugnitz - Austria, Can Revull - Spain. Science of the Total Environment, 704, 135389. https://doi.org/10.1016/j.scitotenv.2019.135389.

    Article  CAS  Google Scholar 

  • Machado, C. S., Alves, R. I. S., Fregonesi, B. M., Tonani, K. A. A., Martinis, B. S., Sierra, J., Nadal, M., Domingo, J. L., & Segura-Muñoz, S. (2016). Chemical contamination of water and sediments in the Pardo River, São Paulo, Brazil. Procedia Engineering, 162, 230–237.

    Article  CAS  Google Scholar 

  • Maciel, C. D. G., & Velini, E. D. (2005). Simulation of rain wetting dynamics and herbicide movement in different straws used under no-tillage system. Planta Daninha, 23, 471–481 (in Portuguese).

  • Martins Filho, M. V., Liccioti, T. T., Pereira, G. T., Marques Júnior, J., & Sanchez, R. B. (2009). Soil and nutrients losses of an Alfisol with sugarcane crop residue. Engenharia Agrícola, 29, 8–18 (in Portuguese).

  • Masters, B., Rohde, K., Gurner, N., & Reid, D. (2013). Reducing the risk of herbicide runoff in sugarcane farming through controlled traffic and early-banded application. Agriculture, Ecosystems & Environment, 180, 29–39. https://doi.org/10.1016/j.agee.2012.02.001.

    Article  Google Scholar 

  • Matzenbacher, F. O., Kalsing, A., Dalazen, G., Markus, C., & Merotto Jr., A. (2015). Antagonism is the predominant effect of herbicide mixtures used for imidazolinone-resistant barnyardgrass (Echinochloa crus-galli) control. Planta Daninha, 33, 587–597.

  • McBroom, M. W., Louch, J., Beasley, R. S., Chang, M., & Ice, G. G. (2013). Runoff of Silvicultural Herbicides Applied Using Best Management Practices. Forest Science, 59, 197–210. https://doi.org/10.5849/forsci.11-012.

    Article  Google Scholar 

  • McKenzie, M. R., Templeman, M. A., & Kingsford, M. J. (2020). Detecting effects of herbicide runoff: The use of Cassiopea maremetens as a biomonitor to hexazinone. Aquatic Toxicology, 221, 105442 doi.org/10.1016/j.aquatox.2020.105442.

    Article  CAS  Google Scholar 

  • Menandro, L. M. S., Cantarella, H., Franco, H. C. J., Kölln, O. T., Pimenta, M. T. B., Sanches, G. M., Rabelo, S. C., & Carvalho, J. L. N. (2017). Comprehensive assessment of sugarcane straw: implications for biomass and bioenergy production. Biofuels, Bioproducts and Biorefining, 11, 488–504.

    Article  CAS  Google Scholar 

  • Montagner, C. C., Vidal, C., Acayaba, R. D., Jardim, W. F., Jardim, I. C. S. F., & Umbuzeiro, G. A. (2014). Trace analysis of pesticides and an assessment of their occurrence in surface and drinking waters from the State of São Paulo (Brazil). Analytical Methods, 6, 6668–6677.

    Article  CAS  Google Scholar 

  • Müller, K., Trolove, M., James, T. K., & Rahman, A. (2004). Herbicide loss in runoff: effects of herbicide properties, slope, and rainfall intensity. Australian Journal of Soil Research, 42, 17–27. https://doi.org/10.1071/SR03090.

  • Nachimuthu, G., Halpin, N. V., & Bell, M. J. (2016). Effect of sugarcane cropping systems on herbicide losses in surface runoff. Science of the Total Environment, 557-558, 773–784. https://doi.org/10.1016/j.scitotenv.2016.03.105.

    Article  CAS  Google Scholar 

  • Negrisoli, E., Velini, E. D., Corrêa, M. R., Rossi, C. V. S., Carbonari, C. A., Costa, A. G. F., & Perim, L. (2011). Effect of sugarcane straw and rain simulation on the efficacy of clomazone + hexazinone in controlling weeds in raw sugarcane area. Planta Daninha, 29, 169–177 (in Portuguese).

  • Pal, S. C., & Chakrabortty, R. (2019). Simulating the impact of climate change on soil erosion in sub-tropical monsoon dominated watershed based on RUSLE, SCS runoff and MIROC5 climatic model. Advances in Space Research, 64, 352–377. https://doi.org/10.1016/j.asr.2019.04.033.

    Article  Google Scholar 

  • Pappalardo, S. E., Otto, S., Gasparini, V., Zanin, G., & Borin, M. (2015). Mitigation of herbicide runoff as an ecosystem service from a constructed surface flow wetland. Hydrobiologia, 774, 193–202. https://doi.org/10.1007/s10750-015-2375-1.

    Article  CAS  Google Scholar 

  • Pereira-Junior, E. V., Giori, F. G., Nascimento, A. L., Tornisielo, V. L., & Regitano, J. B. (2015). Effects of soil attributes and straw accumulation on the sorption of hexazinone and tebuthiuron in tropical soils cultivated with sugarcane. Journal of Environmental Science and Health. Part. B, 50, 238–246. https://doi.org/10.1080/03601234.2015.999588.

    Article  CAS  Google Scholar 

  • Pimentel, L. G., Cherubin, M. R., Oliveira, D. M. S., Cerri, C. E. P., & Cerri, C. C. (2019). Decomposition of sugarcane straw: Basis for management decisions for bioenergy production. Biomass and Bioenergy, 122, 133–144. https://doi.org/10.1016/j.biombioe.2019.01.027.

    Article  CAS  Google Scholar 

  • Pinheiro, P. L., Recous, S., Dietrich, G., Weiler, D. A., Giovelli, R. L., Mezzalira, A. P., & Giacomini, S. J. (2018). Straw removal reduces the mulch physical barrier and ammonia volatilization after urea application in sugarcane. Atmospheric Environment, 194, 179–187. https://doi.org/10.1016/j.atmosenv.2018.09.031.

    Article  CAS  Google Scholar 

  • Ponnou-Delaffon, V., Probst, A., Payre-Suc, V., Granouillac, F., Ferrant, S., Perrin, A. S., & Probst, J. L. (2020). Long and short-term trends of stream hydrochemistry and high frequency surveys as indicators of the influence of climate change, agricultural practices and internal processes (Aurade agricultural catchment, SW France). Ecological Indicators, 110, 105894. https://doi.org/10.1016/j.ecolind.2019.105894.

    Article  CAS  Google Scholar 

  • Prichard, T., Troiano, J., Marade, J., Guo, F., & Canevari, M. (2005). Movement of diuron and hexazinone in clay soil and infiltrated pond water. Journal of Environmental Quality, 34, 2005–2017. https://doi.org/10.2134/jeq2004.0253.

    Article  CAS  Google Scholar 

  • Rahma, A. E., Wang, W., Tang, Z., Lei, T., Warrington, D. N., & Zhao, J. (2017). Straw mulch can induce greater soil losses from loess slopes than no mulch under extreme rainfall conditions. Agricultural and Forest Meteorology, 232, 141–151. https://doi.org/10.1016/j.agrformet.2016.07.015.

    Article  Google Scholar 

  • Ramos, J. C., Bertol, I., Barbosa, F. T., Bertól, C., Mafra, A. L., Miquelluti, D. J., & Mecabô Júnior, J. (2016). Water erosion in surface soil conditions: runoff velocity, concentration and D50 index of sediments in runoff. Scientia Agricola, 73, 286–293.

  • Ranaivoson, L., Naudin, K., Ripoche, A., Affholder, F., Rabeharisoa, L., & Corbeels, M. (2017). Agro-ecological functions of crop residues under conservation agriculture. A review. Agronomy for Sustainable Development, 37. https://doi.org/10.1007/s13593-017-0432-z.

  • Reichenberger, S., Bach, M., Skitschak, A., & Frede, H. G. (2007). Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; A review. Science of the Total Environment, 384, 1–35. https://doi.org/10.1016/j.scitotenv.2007.04.046.

    Article  CAS  Google Scholar 

  • Reis, F. C., Tornisielo, V. L., Pimpinato, R. F., Martins, B. A., & Victória Filho, R. (2017). Leaching of diuron, hexazinone, and sulfometuron-methyl applied alone and in mixture in soils with contrasting textures. Journal of Agricultural and Food Chemistry, 65, 2645–2650.

    Article  Google Scholar 

  • Reis, F. C., Tornisielo, V. L., Martins, B. A. B., de Souza, A. J., de Andrade, P. A. M., Andreote, F. D., Silveira, R. F., & Filho, R. V. (2019). Respiration induced by substrate and bacteria diversity after application of diuron, hexazinone, and sulfometuron-methyl alone and in mixture. Journal of Environmental Science and Health, Part B, 54, 560–568. https://doi.org/10.1080/03601234.2019.1620043.

    Article  CAS  Google Scholar 

  • Rossi, C. V. S., Velini, E. D., Luchini, L. C., Negrisoli, E., Correa, M. R., Pivetta, J. P. V., Costa, A. G. F., & Silva, F. M. L. (2013). Performance of metribuzin apllied on sugarcane straw. Planta Daninha, 31, 223–230 (in Portuguese).

  • Roy, C., Gaillardon, P., & Montfort, F. (2000). The effect of soil moisture content on the sorption of five sterol biosynthesis inhibiting fungicides as a function of their physicochemical properties. Pest Management Science, 56, 795–803. https://doi.org/10.1002/1526-4998(200009)56:9<795::Aid-ps193>3.0.Co;2-y.

    Article  CAS  Google Scholar 

  • Sangchan, W., Hugenschmidt, C., Ingwersen, J., Schwadorf, K., Thavornyutikarn, P., Pansombat, K., & Streck, T. (2012). Short-term dynamics of pesticide concentrations and loads in a river of an agricultural watershed in the outer tropics. Agriculture, Ecosystems & Environment, 158, 1–14. https://doi.org/10.1016/j.agee.2012.05.018.

    Article  CAS  Google Scholar 

  • Setti, S., Maheswaran, R., Radha, D., Sridhar, V., ASCE, M., Barik, K. K., & Narasimham, M. L. (2020). Attribution of hydrologic changes in a tropical river basin to rainfall variability and land-use change: Case study from India. Journal of Hydrologic Engineering, 25(8), 05020015.

    Article  Google Scholar 

  • Shah, V. P., Midha, K. K., Dighe, S., McGilveray, I. J., Skelly, J. P., Yacobi, A., Layloff, T., Viswanathan, C. T., Cook, C. E., McDowall, R. D., Pittman, K. A., & Spector, S. (1992). Analytical methods validation: Bioavailability, bioequivalence and pharmacokinetic studies. Pharmaceutical Research, 9(4), 588–592.

    Article  Google Scholar 

  • Shaw, M., Furnas, M. J., Fabricius, K., Haynes, D., Carter, S., Eaglesham, G., & Mueller, J. F. (2010). Monitoring pesticides in the Great Barrier Reef. Marine Pollution Bulletin, 60, 113–122. https://doi.org/10.1016/j.marpolbul.2009.08.026.

    Article  CAS  Google Scholar 

  • Silva Dias, M. A. F., Dias, J., Carvalho, L. M. V., Freitas, E. D., & Silva Dias, P. L. (2013). Changes in extreme daily rainfall for São Paulo, Brazil. Climatic Change, 116, 705–722. https://doi.org/10.1007/s10584-012-0504-7.

    Article  Google Scholar 

  • Silva Jr., A. C., Queiroz, J. R. G., Martins, C. C., Pereira, M. R. R., & Martins, D. (2016). Emergence of weed species (Brachiaria) under sugarcane straw. Planta Daninha, 34, 423–432.

  • Silva, G. R. V., Souza, Z. M., Martins Filho, M. V., Barbosa, R. S., & Souza, G. S. (2012). Soil, water and nutrient losses by interrill erosion from green cane cultivation. Revista Brasileira de Ciência do Solo, 36, 963–970.

  • Silva, P. V., Monquero, P. A., Silva, F. B., Bevilaqua, N. C., & Malardo, M. R. (2015). Influence of sugarcane straw and sowing depth on the emergence of weed species. Planta Daninha, 33, 405–412.

  • Souza, M. D. (2004) Development of a rainfall simulator for research on environmental impacts on soil physical and chemical properties. Jaguariúna, SP: Brazilian Agricultural Research Corporation (EMBRAPA)

  • Spohr, R. B., Carlesso, R., Gallárreta, C. G., Préchac, F. G., & Petillo, M. G. (2009). Runoff modeling from soil physical characteristics in different places in Uruguay. Ciência Rural, 39, 74–81. (in Portuguese)

  • Strauch, M., Kumar, R., Eisner, S., Mulligan, M., Reinhardt, J., Santini, W., Vetter, T., & Friesen, J. (2016). Adjustment of global precipitation data for enhanced hydrologic modeling of tropical Andean watersheds. Climatic Change, 141, 547–560. https://doi.org/10.1007/s10584-016-1706-1.

    Article  Google Scholar 

  • Strek, J., & Weber, J. (1982). Adsorption, mobility, and activity comparisons between alachlor (Lasso) and metolachlor (Dual) [Barnyardgrass Echinochloa crus-galli, phytotoxicity, herbicides]. Proceedings Southern Weed Science Society, 35, 332–338.

    Google Scholar 

  • Supari, S., Sudibyakto, S., Ettema, J., & Aldrian, E. (2012). Spatiotemporal characteristics of extreme rainfall events over Java island, Indonesia. The Indonesian Journal of Geography, 44, 173–182.

    Google Scholar 

  • Thomaz, E. L., & Vestena, L. R. (2012). Measurement of runoff and soil loss from two differently sized plots in a subtropical environment (Brazil). Earth Surface Processes and Landforms, 37, 363–373. https://doi.org/10.1002/esp.2242.

    Article  Google Scholar 

  • Tonieto, T. A., de Pierri, L., Tornisielo, V. L., & Regitano, J. B. (2016). Fate of tebuthiuron and hexazinone in green-cane harvesting system. Journal of Agricultural and Food Chemistry, 64, 3960–3966. https://doi.org/10.1021/acs.jafc.5b04665.

    Article  CAS  Google Scholar 

  • Uriarte, M., Yackulic, C. B., Cooper, T., Flynn, D., Cortes, M., Crk, T., Cullman, G., McGinty, M., & Sircely, J. (2009). Expansion of sugarcane production in São Paulo, Brazil: Implications for fire occurrence and respiratory health. Agriculture, Ecosystems & Environment, 132, 48–56. https://doi.org/10.1016/j.agee.2009.02.018.

    Article  Google Scholar 

  • USDA (1999) Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. Washington, DC

  • USEPA (2020). Aquatic life benchmarks and ecological risk assessments for registered pesticides. Retrieved February 12, 2021, from https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/aquatic-life-benchmarks-and-ecological-risk

  • Valim, W. C., Panachuki, E., Pavei, D. S., Sobrinho, T. A., & Almeida, W. S. (2016). Effect of sugarcane waste in the control of interrill erosion. Semina Ciências Agrárias, 37, 1155–1164.

  • Vasconcelos, Y. (2018). Pesticides in the balance [WWW Document]. https://revistapesquisa.fapesp.br/en/2019/02/25/pesticides-in-the-balance/. Accessed 7.3. 19

  • Vryzas, Z. (2018). Pesticide fate in soil-sediment-water environment in relation to contamination preventing actions. Current Opinion in Environmental Science & Health, 4, 5–9.

    Article  Google Scholar 

  • Wauchope, R. D. (1978). The pesticide content of surface water draining from agricultural fields—A review. Journal of Environmental Quality, 7, 459–472.

    Article  CAS  Google Scholar 

  • Wilkinson, M. E., Quinn, P. F., Barber, N. J., & Jonczyk, J. (2014). A framework for managing runoff and pollution in the rural landscape using a catchment systems engineering approach. Science of the Total Environment, 468-469, 1245–1254. https://doi.org/10.1016/j.scitotenv.2013.07.055.

  • Zhao, N., Yu, F., Li, C., Zhang, L., Liu, J., Mu, W., & Wang, H. (2015). Soil moisture dynamics and effects on runoff generation at small hillslope scale. Journal of Hydrologic Engineering, 20, 05014024.

    Article  Google Scholar 

Download references

Funding

This study was supported by a partnership between the College of Agriculture Luiz de Queiroz (ESALQ-USP) and the Brazilian Agricultural Research Corporation (EMBRAPA Meio Ambiente). This study was supported in part by Coordination for the Improvement of Higher Education Personnel–Brazil (CAPES)–Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jussara Borges Regitano.

Ethics declarations

Data and Material Availability (Data Transparency)

The authors of the manuscript “Runoff of hexazinone and diuron in green cane systems” state that all data generated or analyzed during this study are included in the published article and its supplementary information file. Nevertheless, the data can be found in the University of São Paulo’s repository at [https://teses.usp.br/teses/disponiveis/11/11140/tde-05012017-181536/pt-br.php]. They are also available from the corresponding author on reasonable request. In addition, this manuscript underwent rigorous revision process before submission and its originally was verified by the Turnitin software, obtaining a high originality degree.

Code Availability

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaz, L.R.L., Barizon, R.R.M., de Souza, A.J. et al. Runoff of Hexazinone and Diuron in Green Cane Systems. Water Air Soil Pollut 232, 116 (2021). https://doi.org/10.1007/s11270-021-05074-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05074-7

Keywords

Navigation