Skip to main content

Advertisement

Log in

Adsorption and Desorption Characteristics of Vanadium (V) on Coexisting Humic Acid and Silica

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Vanadium (V) has been progressively studied due to its potential toxicity in the environment as a trace metal. A coexistence system of humic acid (HA) and silica was employed to simulate the main organic and inorganic components of soil. The adsorption and desorption characteristics of V by the system and the effects of several environmental conditions were investigated. The adsorption data were well described by the Langmuir and Freundlich models, illustrating that the adsorption of V on HA + silica was a monolayer adsorption. The kinetic study indicated that the main adsorption controlling step was a chemical reaction. The thermodynamic study showed that the adsorption was exothermic and spontaneous. The adsorption-desorption process was strongly dependent on the solution pH and HA concentration, while temperature (4–75 °C) and ionic strength (< 1 mol L−1) showed limited effect on overall adsorption performances. In general, the results revealed a considerable V fixation ability of HA-silica coexistence system. The mobility and bioavailability of V in soil was effectively reduced by coexisting HA and silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Chiron, N., Guilet, R., & Deydier, E. (2003). Adsorption of Cu(II) and Pb(II) onto a grafted silica: isotherms and kinetic models. Water Research, 13, 3079–3086.

    Article  Google Scholar 

  • Crans, D. C., Smee, J. J., Gaidamauskas, E., & Yang, L. (2004). The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chemistry Review, 104, 849–902.

    Article  CAS  Google Scholar 

  • Dong, C., Ji, J., Yang, Z., Xiao, Y., & Zhang, J. (2019). Research progress of photocatalysis based on highly dispersed titanium in mesoporous SiO2. Chinese Chemical Letters, 30(4), 853–862.

    Article  CAS  Google Scholar 

  • Fang, G., Wu, W., Liu, C., Dionysiou, D. D., Deng, Y., & Zhou, D. (2017). Activation of persulfate with vanadium species for PCBs degradation: a mechanistic study. Applied Catalysis B: Environmental, 202, 1–11.

    Article  CAS  Google Scholar 

  • Febrianto, J., Kosasih, A., Sunarso, J., Ju, Y., Indraswati, N., & Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. Journal of Hazardous Materials, 162, 616–645.

    Article  CAS  Google Scholar 

  • Freundlich, H. (1906). Adsorption in solids. Zeitschrift fuer Physikalische Chemie, 57, 385–470.

    CAS  Google Scholar 

  • Gan, C., Liu, M., Lu, J., & Yang, J. (2020). Adsorption and desorption characteristics of vanadium (V) on silica. Water, Air, & Soil Pollution, 231(1), 10.

    Article  CAS  Google Scholar 

  • Gustafsson, J. P. (2019). Vanadium geochemistry in the biogeosphere-speciation, solid-solution interactions, and ecotoxicity. Applied Geochemistry, 102, 1–25.

    Article  CAS  Google Scholar 

  • He, W., Yang, J., Li, J., Ai, Y., & Li, J. (2020). Stabilization of vanadium in calcareous purple soil using modified Na-bentonites. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.121978.

  • Ho, Y. S. (1995). Absorption of heavy metals from waste streams by peat [doctoral dissertation]. University of Birmingham(UOB).

  • Imtiaz, M., Rizwan, M. S., Xiong, S., Li, H., Ashraf, M., Shahzad, S. M., Shahzad, M ., Rizwan, M., Tu, S. (2015). Vanadium, recent advancements and research prospects: a review. Environment International, 80, 79–88.

  • Kamel, A. Z., Mohammad, S. A., & Falah, B. H. (2011). Fly ash-based geopolymer for Pb removal from aqueous solution. Journal of Hazardous Materials, 188, 414–421.

    Article  Google Scholar 

  • Kostic, M., Radovic, M., Mitrovic, J., Antonijevic, M., Bojic, D., Petrovic, M., et al. (2014). Using xanthated Lagenaria vulgaris shell biosorbent for removal of Pb(II) ions from wastewater. Journal of the Iranian Chemical Society, 11, 565–578.

    Article  CAS  Google Scholar 

  • Lagergren, S. (1898). Zur theorie der sogenannten adsorption geloster stoffe, Kungliga svenska vetenskapsakademiens. Handlingar, 24, 1–39.

    Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Larsson, M. A., Baken, S., Gustafsson, J. P., Hadialhejazi, G., & Smolders, E. (2013). Vanadium bioavailability and toxicity to soil microorganisms and plants. Environmental Toxicology and Chemistry, 32, 2266–2273.

    Article  CAS  Google Scholar 

  • Larsson, M. A., Hadialhejazi, G., & Gustafsson, J. P. (2017a). Vanadium sorption by mineral soils: development of a predictive model. Chemosphere, 168, 925–932.

    Article  CAS  Google Scholar 

  • Larsson, M. A., Persson, I., Sjöstedt, C., & Gustafsson, J. P. (2017b). Vanadate complexation to ferrihydrite: X-ray absorption spectroscopy and CD-MUSIC modelling. Environmental Chemistry, 14, 141–150.

    Article  CAS  Google Scholar 

  • Leon, I. E., Cadavid-Vargas, J. F., Di Virgilio, A. L., & Etcheverry, S. B. (2017). Vanadium, ruthenium and copper compounds: a new class of nonplatinum metallodrugs with anticancer activity. Current Medicinal Chemistry, 24, 112–148.

    Article  CAS  Google Scholar 

  • Li, Y., Yue, Q., & Gao, B. (2010). Adsorption kinetics and desorption of Cu(II) and Zn(II) from aqueous solution onto humic acid. Journal of Hazardous Materials, 178, 455–461.

    Article  CAS  Google Scholar 

  • Lu, X., Johnson, W. D., & Hook, J. (1998). Reaction of vanadate with aquatic humic substances: an ESR and V-51 NMR study. Environmental Science & Technology, 32, 2257–2263.

    Article  CAS  Google Scholar 

  • Luo, X., Yu, L., Wang, C., Yin, X., Mosa, A., Lv, J., & Sun, H. (2017). Sorption of vanadium (V) onto natural soil colloids under various solution pH and ionic strength conditions. Chemosphere, 169, 609–617.

    Article  CAS  Google Scholar 

  • McDowell, R., & Sharpley, A. (2003). Phosphorus solubility and release kinetics as a function of soil test P concentration. Geoderma, 112, 143–154.

    Article  CAS  Google Scholar 

  • Naeem, A., Westerhoff, P., & Mustafa, S. (2007). Vanadium removal by metal (hydr)oxide adsorbents. Water Research, 41, 1596–1602.

    Article  CAS  Google Scholar 

  • Naguib, M., Halim, J., Lu, J., Cook, K. M., Hultman, L., Gogotsi, Y., et al. (2013). New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. Journal of the American Chemical Society, 135, 15966–15969.

    Article  CAS  Google Scholar 

  • Omidinasab, M., Rahbar, N., Ahmadi, M., Kakavandi, B., Ghanbari, F., Kyzas, G. Z., et al. (2018). Removal of vanadium and palladium ions by adsorption onto magnetic chitosan nanoparticles. Environmental Science and Pollution Research, 25, 34262–34276.

    Article  CAS  Google Scholar 

  • Pandey, A. K., Pandey, S. D., & Misra, V. (2000). Stability constants of metal-humic acid complexes and its role in environmental detoxification. Ecotoxicology and Environmental Safety, 47, 195–200.

    Article  CAS  Google Scholar 

  • Park, J., Kang, J., & Jung, S. (2020). Investigating Microcystin-LR adsorption mechanisms on mesoporous carbon, mesoporous silica, and their amino-functionalized form: surface chemistry, pore structures, and molecular characteristics. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.125811.

  • Pyrzyńska, K., & Wierzbicki, T. (2002). Determination of vanadium species in environmental samples. Microchimica Acta, 140, 55–62.

    Article  Google Scholar 

  • Reijonen, I., Metzler, M., & Hartikainen, H. (2016). Impact of soil pH and organic matter on the chemical bioavailability of vanadium species: the underlying basis for risk assessment. Environmental Pollution, 210, 371–379.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Tsadilas, C. D., & Rinklebe, J. (2013). A review of the distribution coefficients of trace elements in soils: influence of sorption system, element characteristics, and soil colloidal properties. Advances in Colloid and Interface Science, 201, 43–56.

    Article  Google Scholar 

  • Shaheen, S. M., Rinklebe, J., Frohne, T., White, J. R., & DeLaune, R. D. (2014). Biogeochemical factors governing cobalt, nickel, selenium, and vanadium dynamics in periodically flooded Egyptian North Nile Delta rice soils. Soil Science Society of America Journal, 78, 1065–1078.

    Article  Google Scholar 

  • Shaheen, S. M., Alessi, D. S., Tack, F., Ok, Y. S., Kim, K., Gustafsson, J. P., Sparks, D. L., & Rinklebe, J. (2019). Redox chemistry of vanadium in soils and sediments: interactions with colloidal materials, mobilization, speciation, and relevant environmental implications: a review. Advances in Colloid and Interface Science, 265, 1–13.

    Article  CAS  Google Scholar 

  • Sun, H., Yang, Z., Pu, Y., Dou, W., Wang, C., Wang, W., Hao, X., Chen, S., Shao, Q., Dong, M., Wu, S., Ding, T., & Guo, Z. (2019). Zinc oxide/vanadium pentoxide heterostructures with enhanced day-night antibacterial activities. Journal of Colloid and Interface Science, 547, 40–49.

    Article  CAS  Google Scholar 

  • Swift, R. S. (1996). Organic matter characterization. In D. Sparks, A. Page, & P. Helmke (Eds.), Methods of soil analysis (pp. 1018–1020). Madison: Soil Science Society of America.

    Google Scholar 

  • Szalay, A., & Szilágyi, M. (1967). The association of vanadium with humic acids. Geochimica et Cosmochimica Acta, 31, 1–6.

    Article  CAS  Google Scholar 

  • Tian, L., Yang, J., Alewell, C., & Huang, J. H. (2014). Speciation of vanadium in Chinese cabbage (Brassica RapaL.) and soils in response to different levels of vanadium in soils and cabbage growth. Chemosphere, 111, 89–95.

    Article  CAS  Google Scholar 

  • Tombácz, E. (1999). Colloidal properties of humic acids and spontaneous changes of their colloidal state under variable solution conditions. Soil Science, 164, 814–824.

    Article  Google Scholar 

  • Tombäcz, E., Rice, J. A., & Ren, S. Z. (1997). Fractal structure of polydisperse humic acid particles in solution studied by scattering methods. ACH-Models in Chemistry, 134, 877–888.

    Google Scholar 

  • Wang, Y., Zhang, B., Wang, S., & Zhong, Y. (2020). Temporal dynamics of heavy metal distribution and associated microbial community in ambient aerosols from vanadium smelter. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.139360.

  • Watt, J., Burke, I. T., Edwards, R. A., Malcolm, H. M., Mayes, W. M., Olszewska, J. P., Pan, G., Graham, M. C., Heal, K. V., Rose, N. L., Turner, S. D., & Spears, B. M. (2018). Vanadium: a re-emerging environmental hazard. Environmental Science & Technology, 52, 11973–11974.

    Article  CAS  Google Scholar 

  • Wei, L. (2010). Removal and adsorption characteristics of polyvinyl alcohol from aqueous solutions using electrocoagulation. Journal of Hazardous Materials, 177, 842–850.

    Article  Google Scholar 

  • Yang, J., Yang, X., He, Z., Chen, G., Shentu, J., & Li, T. (2004). Adsorption-desorption characteristics of lead in variable charge soils. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 39, 1949–1967.

    Article  CAS  Google Scholar 

  • Yang, J., Wang, M., Jia, Y., Gou, M., & Zeyer, J. (2017). Toxicity of vanadium in soil on soybean at different growth stage. Environmental Pollution, 231, 48–58.

    Article  CAS  Google Scholar 

  • Yu, Y., Liu, M., & Yang, J. (2018). Characteristics of vanadium adsorption on and desorption from humic acid. Chemistry and Ecology, 34, 548–564.

    Article  CAS  Google Scholar 

  • Yu, Y., Luo, H., Tang, W., Yu, C., Lu, L., Li, J., & Yang, J. (2020a). Mechanism of vanadium(IV) resistance of the strains isolated from a vanadium titanomagnetite mining region. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2020.110463.

  • Yu, Y., Li, J., Liao, Y., & Yang, J. (2020b). Effectiveness, stabilization, and potential feasible analysis of a biochar material on simultaneous remediation and quality improvement of vanadium contaminated soil. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.123506.

  • Zhang, J. (2008). Characteristics of adsorption and desorption of heavy metal mercury on humic acid in typical soil (in Chinese). The Master Degree Dissertation of Shandong University.

  • Zhou, J., Zhou, X., Yang, K., Cao, Z., Wang, Z., Zhou, C., et al. (2020a). Adsorption behavior and mechanism of arsenic on mesoporous silica modified by iron-manganese binary oxide (FeMnOx/SBA-15) from aqueous systems. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2019.121229.

  • Zhou, N., Qin, W., Wu, C., & Jia, C. (2020b). Graphene-attached vanadium sulfide composite prepared via microwave-assisted hydrothermal method for high performance lithium ion batteries. Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2020.155073.

Download references

Funding

This work was supported by the Industry Support and Guidance Program of Gansu Higher Education (2019C-16); the Fundamental Research Funds for the Central Universities (2019FZJD007); the Chengdu Science and Technology Project (2018-YF05-00760-SN); and Sichuan University Foreign Culture and Education Expert Program (G20190023075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-yan Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Qy., Liu, M., Lu, J. et al. Adsorption and Desorption Characteristics of Vanadium (V) on Coexisting Humic Acid and Silica. Water Air Soil Pollut 231, 460 (2020). https://doi.org/10.1007/s11270-020-04839-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04839-w

Keywords

Navigation