Skip to main content

Advertisement

Log in

Assessing the Distribution and Concentration of Heavy Metals in Soils of an Agricultural Frontier in the Brazilian Cerrado

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The continuous use of agricultural inputs for grain, fiber, and energy production in the Brazilian savannah can increase heavy metal (HM) concentrations in the soils. In this context, we aimed to determine the natural concentrations and establish the quality reference values (QRVs) of HMs in reference soils of a sedimentary watershed under native vegetation in one of the latest agricultural frontiers of Brazil in order to assess the impact of cultivation on the metal concentrations in cropped soils. Additionally, we studied the spatial variability of HMs and the efficiency of the multivariate analyses to distinguish between natural and anthropogenic sources of metals in the soils. Thirty-two and 30 composite soil samples were collected in areas under agricultural exploration and natural vegetation with minimal anthropic interference (low impact areas), respectively. The QRVs established could be ranked as follows (mg kg−1): Fe (18,700) > V (47.83) > Cr (43.44) > Ba (9.11) > Pb (2.73) > Ni (0.80) > Cu (0.74) > Zn (0.46) > Mo (0.34) > Cd (0.05) > Sb (< 0.0007) > Co (< 0.00008). Natural concentrations observed in non-anthropogenic soils are lower than those found in other regions, with the exception of Cr. Also, we found that the mean concentrations of Cd, Cu, Cr, Mo, Mn, Ni, Sb, V, and Zn in agricultural soil were far higher than their background values of the watershed topsoil. Based on our findings, the increased metal concentration in the agricultural soils increases the ecological risk. On the other hand, the mean metal concentrations remain close to the prevention value for soils established by the Brazilian Council for the Environment for agricultural land, which indicates that these areas require monitoring to guarantee foodstuff safety. Our results are useful for public policies not only in the studied area but also worldwide where soils are derived predominantly from sedimentary rocks such as sandstones, siltstones, shales, and limestones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelwaheb, M., Jebali, K., Dhaouadi, H., & Dridi-Dhaouadi, S. (2019). Adsorption of nitrate, phosphate, nickel and lead on soils: Risk of groundwater contamination. Ecotoxicology and Environmental Safety, 179, 182–187.

    CAS  Google Scholar 

  • Associação Brasileira dos Produtores de Calcário Agrícola – ABRACAL. (2019). Consumo aparente de calcário agrícola em 2017. http://www.abracal.com.br/estatisticas. Accessed 10 May 2019.

  • Albuquerque, B. P., Silva, Y. J. A. B., Nascimento, C. W. A., Silva, Y. J. A. B., Nascimento, R. C., Boechat, C. L., Barbosa, R. S., & Singh, V. P. (2019). Watershed scale assessment of rare earth elements in soils derived from sedimentary rocks. Environmental Monitoring and Assessment, 191, 514–527.

    Google Scholar 

  • Alfaro, M. R., Montero, A., Ugarte, O. M., Nascimento, C. W. A., Accioly, A. M. A., Biondi, C. M., & Silva, Y. J. A. B. (2015). Background concentrations and reference values for heavy metals in soils of Cuba. Environmental Monitoring and Assessment, 187, 4198–4208.

    Google Scholar 

  • Alloway, B. J. (1990). Heavy metals in soils. Glasgow: Blackie Academic & Professional.

    Google Scholar 

  • Almeida Júnior, A. B., Nascimento, C. W. A., Biondi, C. M., Souza, A. P., & Barros, F. M. R. (2016). Background and reference values of metals in soil from Paraíba State, Brazil. Revista Brasileira de Ciência do Solo, 40, 1–13.

    Google Scholar 

  • Andreazza, R., Okeke, B. C., Pieniz, S., Bortolon, L., Lambais, M. R., & Camargo, F. A. O. (2012). Effects of stimulation of copper bioleaching on microbial community in vineyard soil and copper mining waste. Biological Trace Element Research, 146, 124–133.

    CAS  Google Scholar 

  • Bai, J., Cui, B., Chen, B., Zhang, K., Deng, W., Gao, H., et al. (2011). Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecological Modelling, 222, 301–306.

    CAS  Google Scholar 

  • Barbieri, M. (2016). The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. Journal of Geography and Geology, 5, 1–4.

    Google Scholar 

  • Bigalke, M., Ulrich, A., Rehmus, A., & Keller, A. (2017). Accumulation of cadmium and uranium in arable soils in Switzerland. Environmental Pollution, 221, 85–93.

    CAS  Google Scholar 

  • Amorim, S. P. N, Boechat, C. L., Duarte, L. S. L., Rocha, C. B. & Carlos, F. S. (2020). Grasses and legumes as cover crops affect microbial attributes in Oxisol in the cerrado (savannah environment) in the northeast region. Revista Caatinga, 33, 31–42.

  • Bonnail, E., Sarmiento, A. M., Del Valls, T. A., Nieto, J. M., & Riba, I. (2016). Assessment of metal contamination, bioavailability, toxicity and bioaccumulation in extreme metallic environments (Iberian Pyrite Belt) using Corbicula fluminea. Science of the Total Environment, 544, 1031–1044.

    CAS  Google Scholar 

  • Cai, L., Xu, Z., Sun, G., Chen, Z., Bao, P., He, M., et al. (2015). Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. Journal of Geochemical Exploration, 148, 189–195.

    CAS  Google Scholar 

  • Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 513, 143–153.

    Google Scholar 

  • Conselho Nacional do Meio Ambiente – CONAMA. (2009). Resolução n°420/2009. http://www.mma.gov. br/port/conama/legiabre.cfm?codlegi=620. Accessed 21 April 2019.

  • Agência Estadual de Meio Ambiente – CPRH. (2014). Instrução Normativa N° 007/2014: Estabelece os valores de referência da qualidade do solo (VRQ) do Estado de Pernambuco quanto à presença de substâncias químicas para o gerenciamento ambiental de áreas contaminadas por essas substâncias. Diário Oficial do Estado de Pernambuco, Poder Executivo, n.244, p.13, 2014. http://www.jusbrasil.com.br/diarios/82838343/doepe-31-12-2014-pg-13/pdfView. Accessed 10 April 2019.

  • Companhia de Pesquisa de Recursos Minerais – CPRM. (2010). Mapa Geológico do Estado do Piauí Geologia e recursos minerais do Estado do Piauí, Teresina: Serviço Geológico do Brasil. http://rigeo.cprm.gov.br/xmlui/handle/doc/2923?show=full. Accessed 10 may 2019.

  • Defarge, N., Vendômois, J. S., & Séralini, G. E. (2018). Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicology Reports, 5, 156–163.

    CAS  Google Scholar 

  • European Union – EU. (2006). Commission regulation (EC) no. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union, 364, 5–24.

    Google Scholar 

  • Ferreira, E. P., Coelho, R. M., Valladares, G. S., Dias, L. M. S., Assis, A. C. C., Silva, R. C., et al. (2018). Mineralogy and concentration of potentially toxic elements in soils of the São Francisco Sedimentary Basin. Revista Brasileira de Ciência do Solo, 42, e0170088.

    Google Scholar 

  • França, L. C. J., Lisboa, G. S., Silva, J. B. L., Rodolfo Júnior, F., Morais Junior, V. T. M., & Cerqueira, C. L. (2016). Suitability for agricultural and forestry mechanization of the Uruçuí-Preto River Hydrographic Basin, Piauí, Brazil. Nativa, 4, 238–243.

    Google Scholar 

  • Gloaguen, T. V., & Passe, J. J. (2017). Importance of lithology in defining natural background concentrations of Cr, cu, Ni, Pb and Zn in sedimentary soils, northeastern Brazil. Chemosphere, 186, 31–42.

    CAS  Google Scholar 

  • Gupta, D. K., Chatterjee, S., Datta, S., Veer, V., & Walther, C. (2014). Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere, 108, 134–144.

    CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975–1001.

    Google Scholar 

  • International Plant Nutrition Institute – IPNI. (2019). Consumo aparente de fertilizantes e matérias-primas em 2017. http:// http://brasil.ipni.net/article/BRS-3132#aparente. Accessed 19 may 2019.

  • Jacobson, A. P., Riggio, J., Tait, A. M., & Baillie, J. E. M. (2019). Global areas of low human impact (‘low impact areas’) and fragmentation of the natural world. Scientific Reports, 9, 14179.

    Google Scholar 

  • Jovein, E. B., & Hosseini, S. M. (2017). Predicting saltwater intrusion into aquifers in vicinity of deserts using spatiotemporal kriging. Environmental Monitoring and Assessment, 189, 81–97.

    Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants. Boca Raton: Taylor & Francis Group.

    Google Scholar 

  • Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187–200.

    Google Scholar 

  • Kratz, S., Schick, J., & Schnug, E. (2016). Trace elements in rock phosphates and P containing mineral and organo-mineral fertilizers sold in Germany. Science of the Total Environment, 542, 1013–1019.

    CAS  Google Scholar 

  • Kyere, V. N., Greve, K., & Atiemo, S. M. (2016). Spatial assesment of soil contamination by heavy metals from informal eletronic waste recycling in Agbogbloshie, Ghana. Environmental Health and Toxicology, 31, e2016006.

    Google Scholar 

  • Lee, C. S. L., Li, X., Shi, W., Cheung, S. C. N., & Thornton, I. (2006). Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Science of the Total Environment, 356, 45–61.

    CAS  Google Scholar 

  • Lu, A. X., Wang, J. H., Qin, X. Y., Wang, K. Y., Han, P., & Zhang, S. Z. (2012). Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Science of the Total Environment, 425, 66–74.

    CAS  Google Scholar 

  • Lu, Y., Song, S., Wang, R., Liu, Z., Meng, J., Sweetman, A. J., et al. (2015). Impacts of soil and water pollution on food safety and health risks in China. Environment International, 77, 5–15.

    CAS  Google Scholar 

  • Martín, J. A. R., Arias, M. L., & Corbí, J. M. G. (2006). Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations. Environmental Pollution, 144, 1001–1012.

    Google Scholar 

  • Nascimento, C. W. A., Lima, L. H. V., Silva, F. L., Biondi, C. M., & Campos, M. C. C. (2018). Natural concentrations and reference values of heavy metals in sedimentary soils in the Brazilian Amazon. Environmental Monitoring and Assessment, 190, 606–615.

    Google Scholar 

  • Nazeer, S., Zaffar, M., & Naseem, R. (2014). Heavy metals distribution, risk assessment and water quality characterization by water quality index of the River Soan, Pakistan. Ecological Indicators, 43, 262–270.

    CAS  Google Scholar 

  • National Institute of Standards and Technology - NIST. Standard Reference Materials-SRM 2709, 2710 and 2711 Addendum Issue Date: 18 January 2002.

  • Niu, L., Yang, F., Xu, C., Yang, H., & Liu, W. (2013). Status of metal accumulation in farmland soils across China: From distribution to risk assessment. Environmental Pollution, 176, 55e62.

    Google Scholar 

  • Noojipady, P., Morton, D. C., Macedo, M. N., Victoria, D. C., Huang, C., Gibbs, H. K., et al. (2017). Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome. Environmental Research Letters, 12, 025004.

    Google Scholar 

  • Pacheco, L. P., Monteiro, M. M. S., Petter, F. A., Nóbrega, J. C. A., & Santos, A. S. (2017). Biomass and nutrient cycling by cover crops in Brazilian cerrado in the State of Piaui. Revista Caatinga, 30, 13–23.

    Google Scholar 

  • Pfaltzgraff, P. A. S., Torres, F. S. M., & Brandão, R. L. (2010). Geodiversidade do Estado do Piauí. CPRM. http://rigeo.cprm.gov.br/jspui/handle/doc/16772. Accessed 20 June 2020.

  • Preston, W., Nascimento, C. W. A., Biondi, C. M., Souza Junior, V. S., Silva, W. R., & Ferreira, H. A. (2014). Valores de referência de qualidade para metais pesados em solos do Rio Grande do Norte. Revista Brasileira de Ciência do Solo, 38, 1028–1037.

    CAS  Google Scholar 

  • Rada, N. (2013). Assessing Brazil’s cerrado agricultural miracle. Food Policy, 38, 146–155.

    Google Scholar 

  • Ramos, T. V., Santos, L. A. C., Souza, W. G., Souza, K. R., Lima, N. L., Guimaraes, L. E., et al. (2018). Chemical attributes of Brazilian Cerrado soil under different management systems. Australian Journal of Crop Science, 12, 505–510.

    CAS  Google Scholar 

  • Rao, Z. X., Huang, D. Y., Wu, J. S., Zhu, Q. H., Zhu, H. H., Xu, C., et al. (2018). Distribution and availability of cadmium in profile and aggregates of a paddy soil with 30-year fertilization and its impact on cd accumulation in rice plant. Environmental Pollution, 239, 198–204.

    CAS  Google Scholar 

  • Reza, S. K., Baruah, U., Singh, S. K., & Das, T. H. (2015). Geostatistical and multivariate analysis of soil heavy metal contamination near coal mining area, Northeastern India. Environmental Earth Sciences, 73, 5425–5433.

    CAS  Google Scholar 

  • Richer-de-Forges, A. C., Saby, N. P., Mulder, V. L., Laroche, B., & Arrouays, D. (2017). Probability mapping of iron pan presence in sandy podzols in South-West France, using digital soil mapping. Geoderma Regional, 9, 39–46.

    Google Scholar 

  • Roth, E., Mancier, V., & Fabre, B. (2012). Adsorption of cadmium on different granulometric soil fractions: Influence of organic matter and temperature. Geoderma, 189-190, 133–143.

    CAS  Google Scholar 

  • Salonen, V. P., & Korkka-Niemi, K. (2007). Influence of parent sediments on the concentration of heavy metals in urban and suburban soils in Turku, Finland. Applied Geochemistry, 22, 906–918.

    CAS  Google Scholar 

  • Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., et al. (2018). Brazilian soil classification system. Rio de Janeiro: Embrapa Solos.

    Google Scholar 

  • Schossler, T. R., Marchão, R. L., Santos, I. L., Santos, D. P., Nóbrega, J. C. A., & Santos, G. G. (2018). Soil physical quality in agricultural systems on the cerrado of Piauí State, Brazil. Anais da Academia Brasileira de Ciências, 90, 3975–3989.

    CAS  Google Scholar 

  • Silva, F. B. V., Nascimento, C. W. A., Araújo, P. R. M., Silva, F. L., & Lima, L. H. V. (2016). Soil contamination by metals with high ecological risk in urban and rural areas. International journal of Environmental Science and Technology, 14, 553–562.

    Google Scholar 

  • Silva, R. F., Santos, G. G., Nóbrega, J. C. A., Oliveira, G. C., Dias, B. O., Santos, D. P., et al. (2017a). Impacts of land-use and management systems on organic carbon and water-physical properties of a Latossolo Amarelo (Oxisol). Semina: Ciências Agrárias, 38, 109–124.

    Google Scholar 

  • Silva, F. B. V., Nascimento, C. W. A., & Araújo, P. R. M. (2017b). Environmental risk of trace elements in P-containing fertilizers marketed in Brazil. Journal of Soil Science and Plant Nutrition, 17, 635–647.

    Google Scholar 

  • Sousa, R. F., Brasil, E. P. F., Figueiredo, C. C., & Leandro, W. M. (2015a). Soil organic matter fractions in preserved and disturbed wetlands of the Cerrado Biome. Revista Brasileira de Ciência do Solo, 39, 222–231.

    Google Scholar 

  • Sousa, R. F., Brasil, E. P. F., Figueiredo, C. C., & Leandro, W. M. (2015b). Soil microbial biomass and activity in wetlands located in preserved and disturbed environments in the cerrado biome. Bioscience Journal, 31, 1049–1061.

    Google Scholar 

  • Sutherland, R. A., Tolosa, C. A., Tack, F. M. G., & Verloo, M. G. (2000). Characterization of selected element concentrations and enrichment ratios in background and anthropogenically impacted roadside areas. Archives of Environmental Contamination and Toxicology, 38, 428–438.

    CAS  Google Scholar 

  • Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H., & Volkweiss, S. J. (1995). Análise de solo, plantas e outros materiais. Porto Alegre: UFRGS.

    Google Scholar 

  • USEPA. (1998). Method 3051A: Microwave assisted acid digestion of sediments, sludges, soils, and oils. Washington, DC: U.S Environmental Protection Agency (USEPA).

  • Wu, Q., Leung, J. Y. S., Geng, X., Chen, S., Huang, X., Li, H., et al. (2015). Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: Implications for dissemination of heavy metals. Science of the Total Environment, 507, 217–225.

    Google Scholar 

  • Xiao, R., Guo, D., Ali, A., Mi, S., Liu, T., Ren, C., et al. (2019). Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in paddy soils: A case study in Hanzhong, Shaanxi, China. Environmental Pollution, 248, 349–357.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Coordination for the Improvement of Higher Education Personnel (CAPES) for a master’s degree scholarship for the first author.

Funding

This work was supported by the Brazilian National Research and Development Council - CNPq (Process Number: 409398/2016-0) and PQ Fellowship (CNPq Process Number: 303952/2017-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cácio Luiz Boechat.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito, A.C.C., Boechat, C.L., de Sena, A.F.S. et al. Assessing the Distribution and Concentration of Heavy Metals in Soils of an Agricultural Frontier in the Brazilian Cerrado. Water Air Soil Pollut 231, 388 (2020). https://doi.org/10.1007/s11270-020-04760-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04760-2

Keywords

Navigation