Skip to main content
Log in

Evaluation of Acer rubrum Tree Bark as a Bioindicator of Atmospheric Heavy Metal Pollution in Toronto, Canada

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The concentrations of heavy metal (copper (Cu), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn)) were measured in Acer(A.) pseudoplatanus tree bark to evaluate its suitability as a bioindicator of air pollution in downtown Toronto, Canada. The analysis of digested tree bark samples was carried out by inductively coupled plasma optical emission spectrometry (ICP-OES) for Cu, Mn, Ni, Pb, and Zn, whereas a mercury analyzer was used to quantify Hg without sample pre-treatment. The concentrations of the analyzed heavy metals were found to be 26.4 μg g−1 for Cu, 51.7 μg kg−1 for Hg, 55.3 μg g−1 for Mn, 6.55 μg g−1 for Ni, 26.5 μg g−1 for Pb, and 95.2 μg g−1 for Zn. Analysis of background control tree barks (collected in a remote area) showed that maple tree barks in Toronto were strongly enriched with heavy metals, with their mean accumulation factors ranging between 1.88 (Mn) and 12.54 (Pb). The tree bark was also found to distinguish between impacted areas as the locations close to the roads with elevated vehicular traffic showed higher metal contents. Therefore, it could be concluded that A. pseudoplatanus tree bark is a good bioindicator of atmospheric heavy metal pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Apeagyei, E., Bank, S. M., & Spengler, D. J. (2011). Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts. Atmospheric Environment, 45, 2310–2323.

    CAS  Google Scholar 

  • Berlizov, A. N., Blum, O. B., Filby, R. H., Malyuk, I. A., & Tryshyn, V. V. (2007). Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions. Science of the Total Environment., 372, 693–706.

    CAS  Google Scholar 

  • Böhm, P., Wolterbeek, H., Verburg, T., & Musílek, L. (1998). The use of tree bark for environmental pollution monitoring in the Czech Republic. Environmental Pollution, 102, 243–250.

    Google Scholar 

  • Cairns, E., Tharumakulasingam, K., Athar, M., Yousaf, M., Cheng, I., Huang, Y., Lu, J., & Yap, D. (2011). Sources, concentration, and distribution of elemental mercury in the atmosphere in Toronto, Canada. Environmental Pollution, 159, 2003–2008.

    CAS  Google Scholar 

  • Catinon, M., Ayrault, S., Clocchiatti, R., Boudouma, O., Asta, J., Tissut, M., & Ravanet, P. (2009). The anthropogenic elements fraction: a new interpretation of elemental deposits on tree barks. Atmospheric Environment, 43, 1124–1130.

    CAS  Google Scholar 

  • Catinon, M., Ayrault, S., Spadini, L., Boudouma, O., Asta, J., Tissut, M., & Ravanel, P. (2011). Tree bark suber-included particles: a long-term accumulation site for elements of atmospheric origin. Atmospheric Environment, 45, 1102–1109.

    CAS  Google Scholar 

  • Coskun, M. (2006). Toxic metals in the Austrian pine (Pinus Nigra) bark in the Thrace region, Turkey. Environmental Monitoring and Assessment, 121, 173–179.

    CAS  Google Scholar 

  • Cucu-Man, S., & Steinnes, E. (2013). Analysis of selected biomonitors to evaluate the suitability for their complementary use in monitoring trace element atmospheric deposition. Environmental Monitoring and Assessment, 185, 7775–7791.

    CAS  Google Scholar 

  • Currie, G., & Shalaby, A. (2007). Success and challenges in modernizing streetcar systems: experience in Melbourne, Australia, and Toronto, Canada. Transportation Research Board, 2006, 31–39.

    Google Scholar 

  • Dadea, C., Casagrande, S., La Rocca, N., Mimmo, T., Russo, A., & Zerbe, S. (2016). Heavy metal accumulation in urban soils and deciduous trees in the City of Bolzano, N Italy. Waldökologie, Landschaftsforschung und Naturschutz – Forest Ecology, Landscape Research and Nature Conservation Waldökologie, Landschaftsforschung und Naturschutz, online preview, 15, 35–42.

    Google Scholar 

  • Davis, J. M., Jarabek, A. M., Mage, D. T., & Graham, J. A. (1998). The EPA health risk assessment of methylcyclopentadienyl manganese tricarbonyl (MMT). Risk Analysis, 18, 57–70.

    CAS  Google Scholar 

  • Drava, G., Comara, L., Giordani, P., & Minganti, V. (2019). Trace elements in Plantago lanceolate L., a plant used for herbal and food preparations: new data and literature review. Environmental Science and Pollution Research, 26, 2305–2313.

    CAS  Google Scholar 

  • El-Hasan, T., Al-Omari, H., Jiries, A., & Al-Nasir, F. (2002). Cypress tree (Supressus semervirens L.) bark as an indicator for heavy metal pollution in the atmosphere of Amman City, Jordan. Environment International, 28, 513–519.

    CAS  Google Scholar 

  • EPA-USA. (2017). Lead air pollution: basic information about lead air pollution. . USEPA, 109 TW Alexander Drive Research Triangle Park, NC 27709. Retrieved from web page on Aug 14, 2018. https://www.epa.gov/lead-air-pollution/forms/contact-us-about-lead-air-pollution. http://iopscience.iop.org/article/10.1088/1748-9326/aac8e6/pdf

  • Faggi, A. M., Fujiwara, F., Amido, C., & Perelman, P. E. (2011). Use of tree bark for comparing environmental pollution in different sites from Buenos Aires and Montevideo. Environmental Monitoring and Assessment, 178, 237–245.

    CAS  Google Scholar 

  • Fujiwara, F. G., Gómez, D. R., Dawidowski, L., Perelman, P., & Faggi, A. (2011). Metals associated with airborne particulate matter in road dust and tree bark collected in a megacity (Buenos Aires, Argentina). Ecological Indicators, 11, 240–247.

    CAS  Google Scholar 

  • Gratani, L., Crescente, M. F., & Varone, L. (2008). Long-term monitoring of metal pollution by urban trees. Atmospheric Environment, 42, 586.

    Google Scholar 

  • Harrison, R. M., Tilling, R., Romero, M. S. C., Harrad, S., & Jarvis, K. (2003). A study of trace metals and polycyclic aromatic hydrocarbons in the roadside environment. Atmospheric Environment, 37, 2391–2402.

    CAS  Google Scholar 

  • Janta, R., Chantara, S., Inta, A., Kawashima, M., & Satake, K. (2016). Levels of road traffic heavy metals in tree bark layers of Cassia fistula tree. International Journal of Environmental Science and Development, 7, 385–388.

    CAS  Google Scholar 

  • Jiang, Y., Fan, M., Hu, R., Zhao, J., & Wu, Y. (2018). Mosses are better than leaves of vascular plants in monitoring atmospheric heavy metal pollution in urban areas. International Journal of Environmental Research and Public Health, 15, 1105.

    Google Scholar 

  • Kord, B., & Kord, B. (2011). Heavy metal levels in pine (Pinus eldarica Medw.) tree barks as indicators of atmospheric pollution. BioResources, 6(2), 927–935.

    CAS  Google Scholar 

  • Lepp, N. W. (1975). The potential of tree rings for monitoring heavy metal pollution patterns. Environmental Pollution, 9, 49–61.

    CAS  Google Scholar 

  • Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., Pirrone, N., Prestbo, E., & Seigneur, C. (2007). A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio, 36, 19–32.

    CAS  Google Scholar 

  • Lodenius, M. (2013). Use of plants for biomonitoring of airbone mercury in contaminated areas. Environmenal Research, 125, 113–123.

    CAS  Google Scholar 

  • Loranger, S., & Zayed, J. (1994). Manganese and lead concentrations in ambient air and emission rates from unleaded and leaded gasoline between 1981 and 1992 in Canada: a comparative study. Atmospheric Environment, 28, 1645–1651.

    CAS  Google Scholar 

  • Lough, G., Schauer, J. J., Soopark, J., Shafer, M., Deminter, J., & Weistein, J. P. (2005). Emissions of metals associated with motor vehicle roadways. Environmental Science & Technology, 39, 826–836.

    CAS  Google Scholar 

  • Marković, D. M., Milošević, I. R., & Vilotić, D. (2013). Accumulation of Mn and Pb in linden (Tilia platyphyllos Scop.) bark and wood. Environmental Science and Pollution Research, 20, 136–145.

    Google Scholar 

  • Mielke, H. W., & Reagen, P. L. (1998). Soil as an impact pathway of human lead exposure. Environmental Health Perspectives, 106, 217–229.

    CAS  Google Scholar 

  • Mitchell, A. F. (1974). Trees of Britain and Norhtern Europe (p. 347). London: Harper Collins Publishers.

    Google Scholar 

  • Mladenovic, S. A., Dragoja, R., (2012). Factors affecting heavy metal content in medicinal and aromatic and related pharmaceutical products. Seventh Conference on Medicinal and Aromatic Plants of Southeast European Countries, May 2012.

  • Moreira, T. C. L., Amato-Lourenco, L. F., da Silve, G. T., de Andre, C. D. S., Barrozo, L. V., Singer, J. M., Saldiva, P. H. N., Saiki, M., & Locosselli, G. M. (2018). The use of tree barks to monitor traffic related air pollution: a case study in São Paulo–Brazil. Frontier in Environmental Science, 6, 72.

    Google Scholar 

  • Odukoya, O. O., Arowolo, T. A., & Bamgbose, O. (2000). Pb, Zn, and Cu levels in tree barks as indicator of atmospheric pollution. Environment International, 26, 11–16.

    CAS  Google Scholar 

  • Oklo, D. A., & Asemave, K. (2013). Assessment of heavy metals of tree barks in Nigeria. International Journal of Environment and Bioenergy, 5(2), 80–89.

    Google Scholar 

  • Olowoyo, J. O., Van Heerden, E., & Fischer, J. L. (2010). Investigating Jacaranda mimosifolia tree as biomonitor of atmospheric trace metals. Environmental Monitoring and Assessment, 164, 435–443.

    CAS  Google Scholar 

  • Ontario. (2014). Mercury in Ontario. Retrieved on August 14, 2018. https://www.ontario.ca/page/mercury-ontario.

  • Pacheco, A. M. G., Barros, L. I. C., Freitas, M. C., Reis, M. A., Hipólito, C., & Oliveira, O. R. (2002). An evaluation of olive-tree bark for the biological monitoring of airborne trace-elements at ground level. Environmental Pollution, 120, 79–86.

    CAS  Google Scholar 

  • Pajević, S., Borisev, M., Nikolic, N., Arsenov, D. D., Orlovic, S., & Zupunski, M. (2016). Chapter 2 Phytoextraction of heavy metals by fast-growing trees: a review. Phytoremediation. https://doi.org/10.1007/978-3-319-40148-5_2 Springer International Publishing Switzerland 2016.

  • Parzych, A., Mochnacký, S., Sobisz, Z., & Kurhaluk, N. (2017). Accumulation of heavy metals in needles and bark of Pinus species. Folia Forestalia Polonica, series A, 59, 34–44.

    Google Scholar 

  • Patrick, G. J., & Farmer, J. G. (2006). A stable lead isotopic investigation of the use of sycamore tree rings as historical biomonitor of environmental lead contamination. Science of the Total Environment, 362, 278–291.

    CAS  Google Scholar 

  • Patrick, G. J., & Farmer, J. G. (2007). A lead isotopic assessment of tree bark as a biomonitor of contemporary atmospheric lead. Science of the Total Environment, 388, 343–356.

    CAS  Google Scholar 

  • Penkala, M., Ogrednik, P., & Rogula-kozlowska, W. (2018). Particulate matter from the road surface abrasion as a problem of non-exhaust emission control. Environments, 5, 9.

    Google Scholar 

  • Poleschońska, M., Zawadzki, K., Samecka-Cymerman, A., Kolon, K., Klink, A., Krawczyk, & Kempers, A. J. (2013). Evaluation of the bioindicator suitability of Pogonum aviculare in urban areas. Ecological Indicators, 24, 552–556.

    Google Scholar 

  • Qiao, P., Lei, M., Guo, G., Yang, J., Zhou, X., & Chen, T. (2017). Quantitative analysis of the factors influencing soil heavy metal lateral migration in rainfalls based on geographical detector software: a case study in Huanjiang County, China. Sustainability, 9, 1227.

    Google Scholar 

  • Sadiwis, T., Breuste, J., Mitrovic, M., Pavlovic, P., & Tsigaridas, K. (2011). Trees as bioindicator of heavy metal pollution in three European cities. Environmental Pollution, 159, 3560–3570.

    Google Scholar 

  • Sakata, M., & Marumoto, K. (2005). Wet and dry deposition fluxes of mercury in Japan. Atmospheric Environment, 39, 3139–3146.

    CAS  Google Scholar 

  • Samecka-Cymerman, A., Kolon, K., & Kempers, A. J. (2011). Taxus baccata as biomonitor of urban environmental pollution. Polish Journal of Environmental Studies, 20, 1021–1027.

    CAS  Google Scholar 

  • Scerbo, R., Possenti, L., Lampugnani, L., Ristori, T., Barale, R., & Barghigiani, C. (2002). Lichen (Xanthoria parientina) biomonitoring of trace element contamination and air quality assessment in Livomo province (Tuscany, Italy). Science of the Total Environment, 286, 27–40.

    CAS  Google Scholar 

  • Serbula, S. M., Miljkovic, D. D., Kovacevic, R. M., & Ilic, A. A. (2012). Assessment of airborne heavy metal pollution using plant parts and topsoil. Ecotoxicology and Environmental Safety, 76, 209–214.

    CAS  Google Scholar 

  • Silva, S. F., Meirelles, S. T., & Moraes, R. M. (2013). The guava tree as bioindicator during the process of fuel replacement of an oil refinery. Ecological and Environmental Safety, 91, 39–45.

    CAS  Google Scholar 

  • Škrbić, B., Milovac, S., & Matavulj, M. (2012). Multielement profiles of soil, road dust, tree bark and wood-rotten fungi collected at various distances from high-frequency road in urban area. Ecological Indicators, 13, 168–177.

    Google Scholar 

  • Steiner, M., Boller, M., Schulz, T., & Pronk, W. (2007). Modelling heavy metal fluxes from traffic into environment. Journal of Environmental Monitoring, 9, 847–854.

    CAS  Google Scholar 

  • Suzuki, K. (2006). Characterization of airborne particulates and associated trace metals deposited on tree bark by ICP−OES, ICP-MS, SEM-EDX and laser ablation ICP-MS. Atmospheric Environment, 40, 2626–2634.

    CAS  Google Scholar 

  • Tovar-Sanchez, E., Surez-Rodriguez, R., Ramires-Trujillo, A., Valencia-Cavas, L., Hernandez-Plata, I., & Mussali-Galante, P. (2019). The use of biosensors for biomonitoring environmental metal pollution. https://doi.org/10.5772/intechopen.84309.

  • Wallace, L., & Slonecker, T. (1997). Ambient air concentrations of fine (PM2.5) manganese in US national parks and in California and Canadian cities: the possible impact of adding MMT to unleaded gasoline. Journal of the Air & Waste Management Association, 47, 642–652.

    CAS  Google Scholar 

  • Weckwerth, G. (2001). Verification of traffic emitted aerosol components in the ambient air of Cologne (Germany). Atmospheric Environment, 35, 5525–5536.

    CAS  Google Scholar 

  • Wolterbeek, B. (2002). Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environmental Pollution, 120, 11–21.

    CAS  Google Scholar 

  • Zhang, L., Lyman, S., Mao, H., Lin, C., Gay, D. A., Wang, S., Gustin, M. S., Feng, X., & Wania, F. (2017). A synthesis of research needs for improving the understanding of atmospheric mercury cycling. Atmospheric Chemistry and Physics, 17, 9133–9144.

    CAS  Google Scholar 

Download references

Funding

This study received financial support from the Natural Sciences and Engineering Research Council of Canada, Canada Foundation for Innovation, Ryerson University, and National Research Foundation of South Africa (to Dr. K.L. Mandiwana).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Yousaf.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousaf, M., Mandiwana, K.L., Baig, K.S. et al. Evaluation of Acer rubrum Tree Bark as a Bioindicator of Atmospheric Heavy Metal Pollution in Toronto, Canada. Water Air Soil Pollut 231, 382 (2020). https://doi.org/10.1007/s11270-020-04758-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04758-w

Keywords

Navigation