Skip to main content
Log in

Presence of Colistin Resistance mcr-4 Gene and Clinically Relevant Antimicrobial Resistance Genes in Sand Samples from a Public Beach

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The plasmid-borne mobilized colistin resistance genes (mcr-like) are related to resistance to polymyxins, which were reintroduced for the treatment of infections caused by multidrug-resistant pathogens. To analyze the presence of clinically relevant antimicrobial resistance genes (ARGs), including mcr-like genes and plasmids in a beach, sand samples from a public beach were collected. Fifty-seven amplicons from 22 ARGs [mcr-4, blaVIM, blaCTX-M-Gp9, blaPER, blaCMY, qnrB, qnrS, oqxA, oqxB, sul1, sul2, sul3, floR, cmlA, tetA, tetB, tetC, aadA, ant(2″)-Ia, aph(3′)-Ib, aac(6′)-Ib, and mefAE] and 18 amplicons from seven plasmid families (IncFrepB, IncFIA, IncHI1, IncFIB, IncY, IncN, and ColE-like) were detected. To the best of our knowledge, this is the first report of the mcr-4 gene in Brazil and the first report in the world of mcr-4 gene in a recreation area. This study calls attention to the presence of mcr-4 gene and contribute to the surveillance studies about the mcr-like genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Bush, K., & Jacoby, G. A. (2010). Updated functional classification of beta-lactamases. Antimicrobial Agents and Chemotherapy, 54(3), 969–976.

    CAS  Google Scholar 

  • Cabello, F. C., Tomova, A., Ivanova, L., & Godfrey, H. P. (2017). Aquaculture and mcr Colistin resistance determinants. mBio, 8(5), e01229–e01217.

    CAS  Google Scholar 

  • Carattoli, A., Bertini, A., Villa, L., Falbo, V., Hopkins, K. L., & Threlfall, E. J. (2005). Identification of plasmids by PCRbased replicon typing. Journal of Microbiological Methods, 63(3), 219–228.

    CAS  Google Scholar 

  • Carattoli, A., Villa, L., Feudi, C., Curcio, L., Orsini, S., Luppi, A., et al. (2017). Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Eurosurveillance, 22(31), 30589.

    Google Scholar 

  • Carretto, E., Brovarone, F., Nardini, P., Russello, G., Barbarini, D., Pongolini, S., et al. (2018). Detection of mcr-4 positive Salmonella enterica serovar Typhimurium in clinical isolates of human origin, Italy, October to November 2016. Eurosurveillance, 23(2), 17–00821.

    Google Scholar 

  • Carroll, L. M., Gaballa, A., Guldimann, C., Sullivan, G., Henderson, L. O., & Wiedmann, M. (2019). Identification of novel mobilized Colistin resistance gene mcr-9 in a multidrug-resistant, Colistin-Susceptible Salmonella enterica Serotype Typhimurium Isolate. mBio, 10(3), e00853–e00819.

    CAS  Google Scholar 

  • Cattoir, V., Poirel, L., Rotimi, V., Soussy, C. J., & Nordmann, P. (2007). Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. The Journal of Antimicrobial Chemotherapy, 60(2), 394–397.

    CAS  Google Scholar 

  • Chen, X., Zhang, W., Pan, W., Yin, J., Pan, Z., Gao, S., et al. (2012). Prevalence of qnr, aac(6′)-Ib-cr, qepA, and oqxAB in Escherichia coli isolates from humans, animals, and the environment. Antimicrobial Agents and Chemotherapy, 56(6), 3423–3427.

    CAS  Google Scholar 

  • Chen, L., Zhang, J., Wang, J., Butaye, P., Kelly, P., Li, M., et al. (2018). Newly identified colistin resistance genes, mcr-4 and mcr-5, from upper and lower alimentary tract of pigs and poultry in China. PLoS One, 13(3), e0193957.

    Google Scholar 

  • Conceição-Neto, O. C., Aires, C. A. M., Pereira, N. F., da Silva, L. H. J., Picão, R. C., Siqueira, B. N., et al. (2017). Detection of the plasmid-mediated mcr-1 gene in clinical KPC-2-producing Escherichia coli isolates in Brazil. International Journal of Antimicrobial Agents, 50(2), 282–284.

    Google Scholar 

  • Dallenne, C., Costa, A., Decré, D., Favier, C., & Arlet, G. (2010). Development of a set of multiplex PCR assays for the detection of genes encoding important Beta-lactamases in Enterobacteriaceae. The Journal of Antimicrobial Chemotherapy, 65(3), 490–495.

    CAS  Google Scholar 

  • Dalmolin, T. V., de Lima-Morales, D., & Barth, A. L. (2018). Plasmid-mediated colistin resistance: What do we know? The Journal of Infection, 1(2), 16–22.

    Google Scholar 

  • Dutka-Malen, S., Evers, S., & Courvalin, P. (1995). Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. Journal of Clinical Microbiology, 33(1), 24–27.

    CAS  Google Scholar 

  • Fernandes, M. R., Sellera, F. P., Esposito, F., Sabino, C. P., Cerdeira, L., & Lincopan, N. (2017). Colistin-resistant mcr-1-positive Escherichia coli on public beaches, an infectious threat emerging in recreational waters. Antimicrobial Agents and Chemotherapy, 61(7), e00234–e00217.

    Google Scholar 

  • García-Fernández, A., Fortini, D., Veldman, K., Mevius, D., & Carattoli, A. (2009). Characterization of plasmids harbouring qnrS1, qnrB2 and qnrB19 genes in Salmonella. The Journal of Antimicrobial Chemotherapy, 63(2), 274–281.

    Google Scholar 

  • Gordon, L., Cloeckaert, A., Doublet, B., Schwarz, S., Bouju-Albert, A., Ganière, J. P., Le Bris, H., et al. (2008). Complete sequence of the floR-carrying multiresistance plasmid pAB5S9 from freshwater Aeromonas bestiarum. The Journal of Antimicrobial Chemotherapy, 62(1), 65–71.

    CAS  Google Scholar 

  • Grégoire, N., Aranzana-Climent, V., Magréault, S., Marchand, S., & Couet, W. (2017). Clinical pharmacokinetics and pharmacodynamics of colistin. Clinical Pharmacokinetics, 56(12), 1441–1460.

    Google Scholar 

  • Jacoby, G. A., Strahilevitz, J., & Hooper, D. C. (2014). Plasmid-mediated quinolone resistance. Microbiology Spectrum, 2(5). https://doi.org/10.1128/microbiolspec.PLAS-0006-2013.

  • Kerrn, M. B., Klemmensen, T., Frimodt-Mǿller, N., & Espersen, F. (2002). Susceptibility of Danish Escherichia coli strains isolated from urinary tract infections and bacteraemia, and distribution of sul genes conferring sulphonamide resistance. The Journal of Antimicrobial Chemotherapy, 50(4), 513–516.

    CAS  Google Scholar 

  • Keyes, K., Hudson, C., Maurer, J. J., Thayer, S., White, D. G., & Lee, M. D. (2000). Detection of florfenicol resistance genes in Escherichia coli isolated from sick chickens. Antimicrobial Agents and Chemotherapy, 44(2), 421–424.

    CAS  Google Scholar 

  • Kieffer, N., Nordmann, P., Moreno, A. M., Zanolli Moreno, L., Chaby, R., Breton, A., et al. (2018). Genetic and functional characterization of an MCR-3-like enzyme-producing Escherichia coli isolate recovered from swine in Brazil. Antimicrobial Agents and Chemotherapy, 62(7), e00278–e00218.

    CAS  Google Scholar 

  • Krause, K. M., Serio, A. W., Kane, T. R., & Connolly, L. E. (2016). Aminoglycosides: An overview. Cold Spring Harbor Perspectives in Medicine, 6(6), a027029.

    Google Scholar 

  • Ling, Z., Yin, W., Li, H., Zhang, Q., Wang, X., Wang, Z., et al. (2017). Chromosome-mediated mcr-3 variants in Aeromonas veronii from chicken meat. Antimicrobial Agents and Chemotherapy, 61(11), e01272–e01217.

    CAS  Google Scholar 

  • Liu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., et al. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. The Lancet Infectious Diseases, 16(2), 161–168.

    Google Scholar 

  • Ng, L. K., Martin, I., Alfa, M., & Mulvey, M. (2001). Multiplex PCR for the detection of tetracycline resistant genes. Molecular and Cellular Probes, 15(4), 209–215.

    CAS  Google Scholar 

  • Noppe-Leclercq, I., Wallet, F., Haentjens, S., Courcol, R., & Simonet, M. (1999). PCR detection of aminoglycoside resistance genes: A rapid molecular typing method for Acinetobacter baumannii. Research in Microbiology, 150(5), 317–322.

    CAS  Google Scholar 

  • Nordmann, P., & Poirel, L. (2016). Plasmid-mediated colistin resistance: An additional antibiotic resistance menace. Clinical Microbiology and Infection, 22(5), 398–400.

    CAS  Google Scholar 

  • Ovejero, C. M., Delgado-Blas, J. F., Calero-Caceres, W., Muniesa, M., & Gonzalez-Zorn, B. (2017). Spread of mcr-1-carrying Enterobacteriaceae in sewage water from Spain. The Journal of Antimicrobial Chemotherapy, 72(4), 1050–1053.

    CAS  Google Scholar 

  • Peirano, G., Ahamed-Bentley, J., Woodford, N., & Pitout, J. D. (2011). New Delhi Metallo-β-lactamase from traveler returning to Canada. Emerging Infectious Diseases, 17(2), 240–242.

    Google Scholar 

  • Poirel, L., Jayol, A., & Nordmann, P. (2017). Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clinical Microbiology Reviews, 30(2), 557–596.

    CAS  Google Scholar 

  • Rau, R. B., de Lima-Morales, D., Wink, P. L., Ribeiro, A. R., Martins, A. F., & Barth, A. L. (2018). Emergence of mcr-1 producing Salmonella enterica serovar Typhimurium from retail meat: First detection in Brazil. Foodborne Pathogens and Disease, 15(1), 58–59.

    Google Scholar 

  • Rebelo, A. R., Bortolaia, V., Kjeldgaard, J. S., Pedersen, S. K., Leekitcharoenphon, P., Hansen, I. M., et al. (2018). Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Eurosurveillance, 23(6), 17–00672.

    Google Scholar 

  • Roberts, M. C., & Schwarz, S. (2016). Tetracycline and phenicol resistance genes and mechanisms: Importance for agriculture, the environment, and humans. Journal of Environmental Quality, 45(2), 576–592.

    CAS  Google Scholar 

  • Sacramento, A. G., Fernandes, M. R., Sellera, F. P., Muñoz, M. E., Vivas, R., Dolabella, S. S., et al. (2018). Genomic analysis of MCR-1 and CTX-M-8 co-producing Escherichia coli ST58 isolated from a polluted mangrove ecosystem in Brazil. Journal of Global Antimicrobial Resistance, 15, 288–289.

    Google Scholar 

  • Saribas, Z., Tunckanat, F., & Pinar, A. (2006). Prevalence of erm genes encoding macrolide-lincosamide-streptogramin (MLS) resistance among clinical isolates of Staphylococcus aureus in a Turkish university hospital. Clinical Microbiology and Infection, 12(8), 797–799.

  • Sellera, F. P., Fernandes, M. R., Sartori, L., Carvalho, M. P., Esposito, F., Nascimento, C. L., et al. (2017). Escherichia coli carrying IncX4 plasmid-mediated mcr-1 and blaCTX-M genes in infected migratory Magellanic penguins (Spheniscus magellanicus). The Journal of Antimicrobial Chemotherapy, 72(4), 1255–1256.

    CAS  Google Scholar 

  • Sun, J., Zhang, H., Liu, Y. H., & Feng, Y. (2018a). Towards understanding MCR-like colistin resistance. Trends in Microbiology, 26(9), 30042–30048.

    Google Scholar 

  • Sun, J., Li, X. P., Fang, L. X., Sun, R. Y., He, Y. Z., Lin, J., et al. (2018b). Co-occurrence of mcr-1 in the chromosome and on an IncHI2 plasmid: Persistence of colistin resistance in Escherichia coli. International Journal of Antimicrobial Agents, 51(6), 842–847.

    CAS  Google Scholar 

  • Sutcliffe, J., Grebe, T., Tait-Kamradt, A., & Wondrack, L. (1996). Detection of erythromycin-resistant determinants by PCR. Antimicrobial Agents and Chemotherapy, 40(11), 2562–2566.

    CAS  Google Scholar 

  • Teo, J. W. P., Kalisvar, M., Venkatachalam, I., Ng, O. T., Lin, R. T. P., & Octavia, S. (2018). mcr-3 and mcr-4 variants in carbapenemase-producing clinical Enterobacteriaceae do not confer phenotypic polymyxin resistance. Journal of Clinical Microbiology, 56(3), e01562–e01517.

    CAS  Google Scholar 

  • Wang, Y., Tian, G. B., Zhang, R., Shen, Y., Tyrrell, J. M., & Huang, X. (2017). Prevalence, risk factors, outcomes, and molecular epidemiology of mcr-1-positive Enterobacteriaceae in patients and healthy adults from China: An epidemiological and clinical study. The Lancet Infectious Diseases, 17(4), 390–399.

    CAS  Google Scholar 

  • Wang, R., van Dorp, L., Shaw, L. P., Bradley, P., Wang, Q., Wang, X., et al. (2018a). The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nature Communications, 9, 1179.

    Google Scholar 

  • Wang, X., Zhai, W., Li, J., Liu, D., Zhang, Q., Shen, Z., et al. (2018b). Presence of an mcr-3 variant in Aeromonas caviae, Proteus mirabilis, and Escherichia coli from one domestic duck. Antimicrobial Agents and Chemotherapy, 62(2), e02106–e02117.

    Google Scholar 

  • Wang, C., Feng, Y., Liu, L., Wei, L., Kang, M., & Zong, Z. (2020). Identification of novel mobile colistin resistance gene mcr-10. Emerging Microbes & Infections, 9(1), 508–516.

    CAS  Google Scholar 

  • Wise, M. G., Estabrook, M. A., Sahm, D. F., Stone, G. G., & Kazmierczak, K. M. (2018). Prevalence of mcr-type genes among colistin-resistant Enterobacteriaceae collected in 2014-2016 as part of the INFORM global surveillance program. PLoS One, 13(4), e0195281.

    Google Scholar 

  • Zhang, J., Chen, L., Wang, J., Butaye, P., Huang, K., & Qiu, H. (2018). Molecular detection of colistin resistance genes (mcr-1 to mcr-5) in human vaginal swabs. BMC Research Notes, 11(1), 143.

    CAS  Google Scholar 

  • Zhang, H., Hou, M., Xu, Y., Srinivas, S., Huang, M., Liu, L., et al. (2019). Action and mechanism of the colistin resistance enzyme MCR-4. Communications Biology, 2, 36.

    Google Scholar 

Download references

Funding

This study was supported by São Paulo Research Foundation (FAPESP) [grant number 2018/19539-0]. The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) [grant no. 88882.180855/2018-01, 88887.314388/2019-00 and Finance code 001] and the FAPESP [grant no. 2018/01890-3] for fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliana Guedes Stehling.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Ethical Approval

Not required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furlan, J.P.R., dos Santos, L.D.R., Ramos, M.S. et al. Presence of Colistin Resistance mcr-4 Gene and Clinically Relevant Antimicrobial Resistance Genes in Sand Samples from a Public Beach. Water Air Soil Pollut 231, 321 (2020). https://doi.org/10.1007/s11270-020-04707-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04707-7

Keywords

Navigation