Skip to main content
Log in

Heavy Metals, Nitrogen, and Phosphorus in Sediments from the First Drinking Water Reservoir Supplied by Yangtze River in Shanghai, China: Spatial Distribution Characteristics and Pollution Risk Assessment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Endogenous pollution is one of the most notable issues in drinking water reservoirs, since the sediment is a main sink of contaminants in the aquatic environment. In this work, we investigated the spatial distribution characteristics of heavy metals and different species of N and P and assessed the pollution risks of the sediments from the Chenhang Reservoir, which is the first drinking water reservoir supplied by Yangtze River in Shanghai, China. The results show that heavy metals, including Cu, Pb, Zn, Mn, and Fe, were mainly accumulated in the downstream, while most Ni and Cr were concentrated in the sediments from the central and western zones. Total N in the sediments was primarily distributed in the eastern reservoir, while ammonia N and most of total P were accumulated in the central and eastern areas. The geo-accumulation index (Igeo) and potential ecological risk index (PERI) suggest that the sediments were polluted by combined heavy metals at minor to medium levels, posing a potential risk to ecosystem. Moreover, sediment quality guidelines (SQGs) indicate that Ni in all sites and Zn in the eastern reservoir would cause great negative biological response to benthic organisms. Additionally, the sediments were slightly polluted by N but not P, especially in the downstream. Multivariate statistical analyses revealed that Cu, Zn, Pb, and N mainly derived from industrial wastewater, domestic sewage and surface runoff from the Yangtze River, while Cr, Ni, and P mainly originated from natural erosion and nonpoint sources.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraham, J., Allen, P. M., Dunbar, J. A., & Dworkin, S. I. (1999). Sediment type distribution in reservoirs: sediment source versus morphometry. Environmental Geology, 38(2), 101–110. https://doi.org/10.1007/s002540050406.

    Article  CAS  Google Scholar 

  • Bai, X., Ding, S., Fan, C., Liu, T., Shi, D., & Zhang, L. (2009). Organic phosphorus species in surface sediments of a large, shallow, eutrophic lake, Lake Taihu, China. Environ Pollution, 157(8–9), 2507–2513. https://doi.org/10.1016/j.envpol.2009.03.018.

    Article  CAS  Google Scholar 

  • Bai, J., Cui, B., Chen, B., Zhang, K., Deng, W., Gao, H., et al. (2011). Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecological Modelling, 222(2), 301–306. https://doi.org/10.1016/j.ecolmodel.2009.12.002.

    Article  CAS  Google Scholar 

  • Bermejo, J. C. S., Beltrán, R., & Ariza, J. L. G. (2003). Spatial variations of heavy metals contamination in sediments from Odiel river (Southwest Spain). Environment International, 29(1), 69–77.

  • Bettinelli, M., Beone, G. M., Spezia, S., & Baffi, C. (2000). Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis. Analytica Chimica Acta, 424, 289–296.

    Article  CAS  Google Scholar 

  • Bi, D., Guo, X., Cai, Z., Gao, X., Li, Y., Guo, J., et al. (2012). Characteristics of various forms of phosphorus and their relationships in the sediments of Haizi Lake, China. Water Science & Technology, 66(12), 2688–2694. https://doi.org/10.2166/wst.2012.469.

    Article  CAS  Google Scholar 

  • Chen, W., Yang, F., Hu, X., & Cui, S. (2015). Theory and practice of water ecological restoration in pearl river delta cities and towns. China Water & Power Press (in Chinese).

  • Cheng, H., Li, K., & Li, M. (2014). Geochemical background and baseline value of chemical elements in urban soil in China. Earch Science Frontiers, 21(3), 265–306 (in Chinese).

    CAS  Google Scholar 

  • Chi, Q., & Yan, M. (2007). Handbook of elemental abundance for applied geochemistry. Beijing: Geological Publishing House (in Chinese).

    Google Scholar 

  • Draštík, V., Kubečka, J., Tušer, M., Čech, M., Frouzová, J., Jarolím, O., et al. (2008). The effect of hydropower on fish stocks: comparison between cascade and non-cascade reservoirs. Hydrobiologia, 609(1), 25–36. https://doi.org/10.1007/s10750-008-9393-1.

    Article  Google Scholar 

  • Fan, H., Chen, S., Li, Z., Liu, P., Xu, C., & Yang, X. (2020). Assessment of heavy metals in water, sediment and shellfish organisms in typical areas of the Yangtze River Estuary, China. Marine Pollution Bulletin, 151, 110864. https://doi.org/10.1016/j.marpolbul.2019.110864.

    Article  CAS  Google Scholar 

  • GracePavithra, K., Jaikumar, V., Kumar, P. S., & SundarRajan, P. (2019). A review on cleaner strategies for chromium industrial wastewater: present research and future perspective. Journal of Cleaner Production, 228, 580–593. https://doi.org/10.1016/j.jclepro.2019.04.117.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control: a sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  • Huang, Q., Shen, H., Wang, Z., Liu, X., & Fu, R. (2006). Influences of natural and anthropogenic processes on the nitrogen and phosphorus fluxes of the Yangtze estuary, China. Regional Environmental Change, 6(3), 125–131. https://doi.org/10.1007/s10113-005-0001-x.

    Article  CAS  Google Scholar 

  • Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al-Mamun, M., & Islam, M. K. (2015). Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecological Indicators, 48, 282–291. https://doi.org/10.1016/j.ecolind.2014.08.016.

    Article  CAS  Google Scholar 

  • Ji, X., Dahlgren, R. A., & Zhang, M. (2016). Comparison of seven water quality assessment methods for the characterization and management of highly impaired river systems. Environmental Monitoring and Assessment, 188(1), 15. https://doi.org/10.1007/s10661-015-5016-2.

    Article  CAS  Google Scholar 

  • Kelso, B. H. L., Smith, R. V., Laughlin, R. J., & Lennox, S. D. (1997). Dissimilatory nitrate reduction in anaerobic sediments leading to river nitrite accumulation. Applied and Environmental Microbiology, 63, 4679–4685.

    Article  CAS  Google Scholar 

  • Kim, J. K., Onda, Y., Yang, D.-Y., & Kim, M. S. (2013). Temporal variations of reservoir sediment sources in a small mountainous catchment in Korea. Earth Surface Processes and Landforms, 38, 1380–1392. https://doi.org/10.1002/esp.3379.

    Article  Google Scholar 

  • Lee, J.-K., & Oh, J.-M. (2018). A study on the characteristics of organic matter and nutrients released from sediments into agricultural reservoirs. Water, 10(8). https://doi.org/10.3390/w10080980.

  • Li, F., Huang, J., Zeng, G., Yuan, X., Li, X., Liang, J., et al. (2013). Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. Journal of Geochemical Exploration, 132, 75–83. https://doi.org/10.1016/j.gexplo.2013.05.007.

    Article  CAS  Google Scholar 

  • Liu, D., Lu, S., & Lin, W. (2005). Study on water quality model and self-purification of Chenhang reservoir. Water Resources Protection, 21(2), 40–45 (in Chinese).

    CAS  Google Scholar 

  • Liu, H., Pan, D., & Chen, P. (2015). A two-year field study and evaluation of water quality and trophic state of a large shallow drinking water reservoir in Shanghai, China. Desalination and Water Treatment, 57(29), 13829–13838. https://doi.org/10.1080/19443994.2015.1059370.

    Article  CAS  Google Scholar 

  • Long, E. R. (2006). Calculation and uses of mean sediment quality guideline quotients: a critical review. Environmental Science & Technology, 40(6), 1726–1736. https://doi.org/10.1021/es058012d.

    Article  CAS  Google Scholar 

  • Long, E. R., Macdonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19(1), 81–97. https://doi.org/10.1007/bf02472006.

    Article  Google Scholar 

  • Ma, X., Li, Y., Zhang, M., Zheng, F., & Du, S. (2011). Assessment and analysis of non-point source nitrogen and phosphorus loads in the Three Gorges Reservoir Area of Hubei Province, China. Science of the Total Environment, 412-413, 154–161. https://doi.org/10.1016/j.scitotenv.2011.09.034.

    Article  CAS  Google Scholar 

  • Maanan, M., Saddik, M., Maanan, M., Chaibi, M., Assobhei, O., & Zourarah, B. (2015). Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecological Indicators, 48, 616–626. https://doi.org/10.1016/j.ecolind.2014.09.034.

    Article  CAS  Google Scholar 

  • Macdonald, D. D., Carr, R. S., Calder, F. D., Long, E. R., & Ingersoll, C. G. (1996). Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology, 5(4), 253–278. https://doi.org/10.1007/bf00118995.

    Article  CAS  Google Scholar 

  • Młynarczyk, N., Bartoszek, M., Polak, J., & Sułkowski, W. W. (2013). Forms of phosphorus in sediments from the Goczałkowice reservoir. Applied Geochemistry, 37, 87–93. https://doi.org/10.1016/j.apgeochem.2013.07.008.

    Article  CAS  Google Scholar 

  • Morales-Marín, L. A., Wheater, H. S., & Lindenschmidt, K. E. (2017). Estimating sediment loadings in the South Saskatchewan River catchment. Water Resources Management, 32(2), 769–783. https://doi.org/10.1007/s11269-017-1838-8.

    Article  Google Scholar 

  • Mudroch, A., & Azcue, J. M. (1995). Manual of Aquatic Sediment Sampling. CRC Press.

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2, 108–118.

    Google Scholar 

  • Padedda, B. M., Sechi, N., Lai, G. G., Mariani, M. A., Pulina, S., Sarria, M., et al. (2017). Consequences of eutrophication in the management of water resources in Mediterranean reservoirs: a case study of Lake Cedrino (Sardinia, Italy). Global Ecology and Conservation, 12, 21–35. https://doi.org/10.1016/j.gecco.2017.08.004.

    Article  Google Scholar 

  • Rice, E. W., Baird, R. B., Eaton, A. D., & Clesceri, L. S. (2012). Standard Methods for the Examination of Water and Wastewater. Washington: American Public Health Association.

    Google Scholar 

  • Ruban, V., Brigault, S., Demare, D., & Philippe, A. M. (1999). An investigation of the origin and mobility of phosphorus in freshwater sediments from Bort-Les-Orgues Reservoir, France. Journal of Environmental Monitoring: JEM, 4(1), 403–407.

    Article  Google Scholar 

  • Ruban, V., López-Sánchez, J. F., Pardo, P., Rauret, G., Muntau, H., & Quevauviller, P. (2001). Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments—a synthesis of recent works. Fresenius' Journal of Analytical Chemistry, 370(2), 224–228. https://doi.org/10.1007/s002160100753.

    Article  CAS  Google Scholar 

  • Rydin, E. (2000). Potentially mobile phosphorus in Lake Erken sediment. Water Research, 34(7), 2037–2042. https://doi.org/10.1016/s0043-1354(99)00375-9.

    Article  CAS  Google Scholar 

  • SAC (Standardization Administration of the People's Republic of China). (1987). Method for the determination of soil total nitrogen (semi-micro Kjeldahl method) (NY/T 53-1987). Beijing: Standards Press of China (in Chinese).

    Google Scholar 

  • Sadiq, R., Husain, T., Bose, N., & Veitch, B. (2003). Distribution of heavy metals in sediment pore water due to offshore discharges: an ecological risk assessment. Environmental Modelling & Software, 18(5), 451–461. https://doi.org/10.1016/s1364-8152(03)00010-0.

    Article  Google Scholar 

  • Tang, X. Q., Wu, M., Dai, X. C., & Chaia, P. H. (2014). Phosphorus storage dynamics and adsorption characteristics for sediment from a drinking water source reservoir and its relation with sediment compositions. Ecological Engineering, 64, 276–284. https://doi.org/10.1016/j.ecoleng.2014.01.005.

    Article  Google Scholar 

  • Tong, Y., Bu, X., Chen, J., Zhou, F., Chen, L., Liu, M., et al. (2017). Estimation of nutrient discharge from the Yangtze River to the East China Sea and the identification of nutrient sources. Journal of Hazardous Materials, 321, 728–736. https://doi.org/10.1016/j.jhazmat.2016.09.011.

    Article  CAS  Google Scholar 

  • Violintzis, C., Arditsoglou, A., & Voutsa, D. (2009). Elemental composition of suspended particulate matter and sediments in the coastal environment of Thermaikos Bay, Greece: delineating the impact of inland waters and wastewaters. Journal of Hazardous Materials, 166(2–3), 1250–1260. https://doi.org/10.1016/j.jhazmat.2008.12.046.

    Article  CAS  Google Scholar 

  • Wang, J., Zhu, Y., & Cheng, C. (2014). Change analysis in ten years of ammonia nitrogen in water inlet and outlet in Chenhang Reservoir. China Water Transport (the last half), 14(2), 201–202 (in Chinese).

    Google Scholar 

  • Wang, B., Lu, S. Q., Lin, W. Q., Yang, Y. F., & Wang, D. Z. (2016). Water quality model with multiform of N/P transport and transformation in the Yangtze River Estuary. Journal of Hydrodynamics, 28(3), 423–430. https://doi.org/10.1016/s1001-6058(16)60645-5.

    Article  Google Scholar 

  • Wang, H., Gilbert, J. A., Zhu, Y., & Yang, X. (2018a). Salinity is a key factor driving the nitrogen cycling in the mangrove sediment. Science of the Total Environment, 631-632, 1342–1349. https://doi.org/10.1016/j.scitotenv.2018.03.102.

    Article  CAS  Google Scholar 

  • Wang, L., Dai, L., Li, L., & Liang, T. (2018b). Multivariable cokriging prediction and source analysis of potentially toxic elements (Cr, Cu, Cd, Pb, and Zn) in surface sediments from Dongting Lake, China. Ecological Indicators, 94, 312–319. https://doi.org/10.1016/j.ecolind.2018.07.005.

    Article  CAS  Google Scholar 

  • Weatherburn, M. W. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry, 39, 971–974.

    Article  CAS  Google Scholar 

  • Wei, X., Han, L., Gao, B., Zhou, H., Lu, J., & Wan, X. (2016). Distribution, bioavailability, and potential risk assessment of the metals in tributary sediments of Three Gorges Reservoir: the impact of water impoundment. Ecological Indicators, 61, 667–675. https://doi.org/10.1016/j.ecolind.2015.10.018.

    Article  CAS  Google Scholar 

  • Withers, P. J., & Jarvie, H. P. (2008). Delivery and cycling of phosphorus in rivers: a review. Science of the Total Environment, 400(1–3), 379–395. https://doi.org/10.1016/j.scitotenv.2008.08.002.

    Article  CAS  Google Scholar 

  • Wu, G. (2018). The story of four major water sources in Shanghai—Chenhang reservoir: the first source reservoir of the Yangtze River in Shanghai. China Three Gorges, 2, 58–63 (in Chinese).

    Google Scholar 

  • Yan, C., Li, Q., Zhang, X., & Li, G. (2009). Mobility and ecological risk assessment of heavy metals in surface sediments of Xiamen Bay and its adjacent areas, China. Environmental Earth Sciences, 60(7), 1469–1479. https://doi.org/10.1007/s12665-009-0282-3.

    Article  CAS  Google Scholar 

  • Yang, Y., Gao, B., Hao, H., Zhou, H., & Lu, J. (2017). Nitrogen and phosphorus in sediments in China: a national-scale assessment and review. Science of the Total Environment, 576, 840–849. https://doi.org/10.1016/j.scitotenv.2016.10.136.

    Article  CAS  Google Scholar 

  • Yi, Y., Yang, Z., & Zhang, S. (2011). Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental Pollution, 159(10), 2575–2585. https://doi.org/10.1016/j.envpol.2011.06.011.

    Article  CAS  Google Scholar 

  • Yu, Y., Wang, P., Wang, C., & Wang, X. (2018). Optimal reservoir operation using multi-objective evolutionary algorithms for potential estuarine eutrophication control. Journal of Environmental Management, 223, 758–770. https://doi.org/10.1016/j.jenvman.2018.06.044.

    Article  CAS  Google Scholar 

  • Zahra, A., Hashmi, M. Z., Malik, R. N., & Ahmed, Z. (2014). Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah—feeding tributary of the Rawal Lake Reservoir, Pakistan. Science of the Total Environment, 470-471, 925–933. https://doi.org/10.1016/j.scitotenv.2013.10.017.

    Article  CAS  Google Scholar 

  • Zhang, L., Chen, S., & Yi, L. (2015). The sediment source and transport trends around the abandoned Yellow River Delta, China. Marine Georesources & Geotechnology, 34(5), 440–449. https://doi.org/10.1080/1064119x.2015.1025928.

    Article  CAS  Google Scholar 

  • Zhang, G., Cheng, W., Chen, L., Zhang, H., & Gong, W. (2019). Transport of riverine sediment from different outlets in the Pearl River Estuary during the wet season. Marine Geology, 415. https://doi.org/10.1016/j.margeo.2019.06.002.

  • Zhao, Y., Zheng, B., Jia, H., & Chen, Z. (2019). Determination sources of nitrates into the Three Gorges Reservoir using nitrogen and oxygen isotopes. Science of the Total Environment, 687, 128–136. https://doi.org/10.1016/j.scitotenv.2019.06.073.

    Article  CAS  Google Scholar 

  • Zhou, Y., Guo, S., Liu, P., & Xu, C. (2014). Joint operation and dynamic control of flood limiting water levels for mixed cascade reservoir systems. Journal of Hydrology, 519, 248–257. https://doi.org/10.1016/j.jhydrol.2014.07.029.

    Article  Google Scholar 

  • Zhu, M., Zhu, G., Li, W., Zhang, Y., Zhao, L., & Gu, Z. (2013). Estimation of the algal-available phosphorus pool in sediments of a large, shallow eutrophic lake (Taihu, China) using profiled SMT fractional analysis. Environmental Pollution, 173, 216–223. https://doi.org/10.1016/j.envpol.2012.10.016.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (41807461), Shanghai Sailing Program (18YF1401000), Fundamental Research Funds for the Central Universities (2019FZJD007 and 2232018D3-19), National Key Research and Development Project of China (2019YFC0408604), and Shanghai Yangpu District Postdoctoral Innovation Practice Base Research Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinshan Song.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1.

Four tables providing baseline concentrations of heavy metals, sediment quality guidelines for heavy metals, averaged concentrations of heavy metals, and PCA results. This material is available free of charge via the Internet at http:// (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Shen, Y., Wu, X. et al. Heavy Metals, Nitrogen, and Phosphorus in Sediments from the First Drinking Water Reservoir Supplied by Yangtze River in Shanghai, China: Spatial Distribution Characteristics and Pollution Risk Assessment. Water Air Soil Pollut 231, 298 (2020). https://doi.org/10.1007/s11270-020-04651-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04651-6

Keywords

Navigation