Skip to main content
Log in

Synthesis and Application of Titanium Dioxide Nanoparticles for Removal of Cadmium from Wastewater: Kinetic and Equilibrium Study

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Cadmium (Cd) contamination in water resources has become a potentially serious threat to public health and environment across the globe. In this experiment, we investigated the capacity of titanium dioxide nanoparticles (TiO2 NPs) for selective removal of Cd from wastewater. The TiO2 NPs were prepared using newly developed sol-gel method and sorption attributes were investigated as a function of contact time, sorbent dosage, pH, and initial Cd concentration. Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models were successfully employed to delineate the Cd sorption equilibrium results. The Langmuir isotherm and pseudo-second-order kinetic models well fitted the experimental data compared to all other models showing that the Cd sorption was attributed to monolayer sorption and chemisorption process, respectively. The maximum Cd sorption was observed as 89.45% at pH 4.3 with 0.7 g L−1, 30 mg L−1 initial Cd concentration, and 2-h shaking time duration. The SEM analyses revealed that the surface of TiO2 NPs was extremely loaded with the cluster of rough and smooth sites in round form which favored the Cd sorption from solution. Thus, TiO2 NPs could be promising, low cost, and eco-friendly sorbents for Cd adsorption from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbas, T., Rizwan, M., Ali, S., Adrees, M., Mahmood, A., Rehman, M. Z., Ibrahim, M., Arshad, M., & Qayyum, M. (2018). Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicology and Environmental Safety, 148, 825–833.

    Article  CAS  Google Scholar 

  • Ahmad, M., Lee, S. S., Rajapaksha, A. U., Vithanage, M., Zhang, M., Cho, J. S., Lee, S. E., & Ok, Y. S. (2013). Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresource Technology, 143, 615–622.

    Article  CAS  Google Scholar 

  • Aitken, R. J., Maynard, A. D., Butz, T., Colvin, V., Donaldson, K., Oberdörster, G., & Tinkle, S. S. (2006). Safe handling of nanotechnology. Nature, 444, 267.

    Article  Google Scholar 

  • Albadarin, A. B., Mangwandi, C., Walker, G. M., Allen, S. J., Ahmad, M. N., & Khraisheh, M. (2013). Influence of solution chemistry on Cr(VI) reduction and complexation onto date-pits/tea-waste biomaterials. Journal of Environmental Management, 114, 190–201.

    Article  CAS  Google Scholar 

  • Ali, S., Rizwan, M., Noureen, S., Anwar, S., Ali, B., Naveed, M., & Ahmad, P. (2019). Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environmental Science and Pollution Research, 26(11), 11288–11299.

    Article  CAS  Google Scholar 

  • Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512–513, 143–153.

    Article  Google Scholar 

  • EFSA. (2009). Scientific opinion on arsenic in food 1. EFSA Journal, 7, 1351. https://doi.org/10.2903/j.efsa.2009.1351.

    Article  Google Scholar 

  • EFSA. (2017). Metals as contaminants in food. Parma: European Food Safety Authority https://www.efsa.europa.eu/en/topics/topic/metals-contaminants-food. Accessed 10 Nov 2018.

    Google Scholar 

  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2–10.

    Article  CAS  Google Scholar 

  • Gottschalk, F., Sonderer, T., Scholz, R. W., & Nowack, B. (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environmental Science & Technology, 43, 9216–9222.

    Article  CAS  Google Scholar 

  • Gupta, A., & Balomajumder, C. (2015). Simultaneous adsorption of Cr(VI) and phenol onto tea waste biomass from binary mixture: multi-component adsorption, thermodynamic and kinetic study. Journal of Environmental Chemical Engineering, 3, 785–796.

    Article  CAS  Google Scholar 

  • Hossain, M. A., & AL-Jabri, N. N. (2014). Comparative chemical composition and antimicrobial activity study of essential oils from two imported lemon fruits samples against pathogenic bacteria. Beni-Suef University Journal of Basic and Applied Sciences, 3, 247–253.

    Article  Google Scholar 

  • Hussain, S., Rengel, Z., Qaswar, M., Amir, M., & Zafar-ul-Hye, M. (2019). Arsenic and heavy metal (cadmium, lead, mercury and nickel) contamination in plant-based foods. Plant and Human Health, 2, 447–490.

    Article  Google Scholar 

  • Idrees, M., Batool, S., Kalsoom, T., Yasmeen, S., Kalsoom, A., Raina, S., & Kong, J. (2018). Animal manure-derived biochars produced via fast pyrolysis for the removal of divalent copper from aqueous media. Journal of Environmental Management, 213, 109–118.

    Article  CAS  Google Scholar 

  • Illeperuma, O. A. (2000). Environmental pollution in Sri Lanka: a review. Journal of the National Science Foundation of Sri Lanka, 28, 301–325.

    Article  Google Scholar 

  • Jauasumana, M. A. C. S., Paranagama, P. A., Amarasinge, M., Fonseka, S. J., & Wijekoon, D. V. (2011). Presence of arsenic in pesticides used in Sri Lanka. Water Professional’s Day Symposium, Water Resources Research in Sri Lanka, Faculty of Agriculture, University of Peradenyia (2011), 127–141.

  • Kataria, N., Garg, V. K., Jain, M., & Kadirvelu, K. (2016). Preparation, characterization and potential use of flower shaped zinc oxide nanoparticles (ZON) for the adsorption of Victoria Blue B dye from aqueous solution. Advanced Powder Technology, 27, 1180–1188.

    Article  CAS  Google Scholar 

  • Khalil, U., Shakoor, M. B., Ali, S., & Rizwan, M. (2018). Tea waste as a potential biowaste for removal of hexavalent chromium from wastewater: equilibrium and kinetic studies. Arabian Journal of Geosciences, 11, 1–9.

    Article  Google Scholar 

  • Koju, N. K., Song, X., Wang, Q., Hu, Z., & Colombo, C. (2018). Cadmium removal from simulated groundwater using alumina nanoparticles: behaviors and mechanisms. Environmental Pollution, 240, 255–266.

    Article  CAS  Google Scholar 

  • Krämer, U. (2018). The plants that suck up metal, Life sciences. Germen Research, 3, 18–23.

    Article  Google Scholar 

  • Lin, J., Su, B., Sun, M., Chen, B., & Chen, Z. (2018). Biosynthesized iron oxide nanoparticles used for optimized removal of cadmium with response surface methodology. Science of the Total Environment, 627, 314–321.

    Article  CAS  Google Scholar 

  • Mohan, D., Rajput, S., Singh, V. K., Steele, P. H., & Pittman, C. U. (2011). Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. Journal of Hazardous Materials, 188, 319–333.

    Article  CAS  Google Scholar 

  • Nowack, B., Ranville, J. F., Diamond, S., Gallego-Urrea, J. A., Metcalfe, C., Rose, J., & Klaine, S. J. (2012). Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environmental Toxicology and Chemistry, 31, 50–59.

    Article  CAS  Google Scholar 

  • Patrick. (2003). Toxic metals and antioxidants: part II. The role of antioxidants in arsenic and cadmium toxicity. Alternative Medical Reviews, 8, 106–128.

    Google Scholar 

  • Prasad, K. S., Ramanathan, A., Paul, J., Subramanian, V., & Prasad, R. (2014). Biosorption of arsenite (As+3) and arsenate (As+5) from aqueous solution by Arthrobacter sp. biomass. Environmental Technology, 34, 2701–2708.

    Article  Google Scholar 

  • Razmovski, R., & Šćiban, M. (2008). Biosorption of Cr (VI) and Cu (II) by waste tea fungal biomass. Ecological Engineering, 34, 179–186.

    Article  Google Scholar 

  • Rehman, M. Z., Rizwan, M., Ali, S., Sabir, M., & Sohail, M. I. (2017). Contrasting effects of organic and inorganic amendments on reducing lead toxicity in wheat. Bulletin of Environmental Contamination and Toxicology, 99, 642–647.

    Article  Google Scholar 

  • Rehman, M. Z., Rizwan, M., Rauf, A., Ayub, M. A., Ali, S., Qayyum, M. F., & Sanaullah, M. (2019). Split application of silicon in cadmium (Cd) spiked alkaline soil plays a vital role in decreasing Cd accumulation in rice (Oryza sativa L.) grains. Chemosphere, 226, 454–462.

    Article  Google Scholar 

  • Rizwan, M., Ali, S., Adrees, M., Ibrahim, M., Tsang, D. C. W., Rehman, M. Z., Zahir, Z. A., Rinklebe, J., Tack, F. M. G., & Ok, Y. S. (2017). A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere, 182, 90–105.

    Article  CAS  Google Scholar 

  • Rizwan, M., Ali, S., Rehman, M. Z., Javed, M. R., & Bashir, A. (2018). Lead toxicity in cereals and its management strategies: a critical review. Water, Air, & Soil Pollution, 229, 1–16.

    Article  CAS  Google Scholar 

  • Sahmoune, M. N., Louhab, K., & Boukhiar, A. (2011). Advanced biosorbents materials for removal of chromium from water and wastewaters. Environmental Progress & Sustainable Energy, 30, 284–293.

    Article  CAS  Google Scholar 

  • Shakoor, M. B., Nawaz, R., Hussain, F., Raza, M., Ali, S., Rizwan, M., & Ahmad, S. (2017). Human health implications, risk assessment and remediation of As-contaminated water: a critical review. Science of the Total Environment, 601, 756–769.

    Article  Google Scholar 

  • Shakoor, M. B., Bibi, I., Niazi, N. K., Shahid, M., Nawaz, M. F., Farooqi, A., & Lüttge, A. (2018a). The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere, 199, 737–746.

    Article  CAS  Google Scholar 

  • Shakoor, M. B., Niazi, N. K., Bibi, I., Shahid, M., Sharif, F., Bashir, S., & Rinklebe, J. (2018b). Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater. Science of the Total Environment, 645, 1444–1455.

    Article  CAS  Google Scholar 

  • Shakoor, M. B., Niazi, N. K., Bibi, I., Shahid, M., Saqib, Z. A., Nawaz, M. F., Shaheen, S. M., Wang, H., Tsang, D. C., & Bundschuh, J. (2019). Exploring the arsenic removal potential of various biosorbents from water. Environment International, 123, 567–579.

    Article  CAS  Google Scholar 

  • Sharma, R. K., & Agrawal, M. (2005). Biological effects of heavy metals: an overview. Journal of Environmental Biology, 26, 301–313.

    CAS  Google Scholar 

  • Singh, S., Lal, S., Harjit, J., Amlathe, S., & Kataria, H. C. (2011). Potential of metalextractants in determination of trace metals in water sample. Advance Study in Biology, 3, 239–246.

    CAS  Google Scholar 

  • Tajernia, H., Ebadi, T., Nasernejad, B., & Ghafori, M. (2014). Arsenic removal from water by sugarcane bagasse: an application of response surface methodology (RSM). Water, Air, and Soil Pollution, 225, 1–22.

    Article  CAS  Google Scholar 

  • Wan, S., Wu, J., Zhou, S., Wang, R., Gao, B., & He, F. (2018). Enhanced lead and cadmium removal using biochar-supported hydrated manganese oxide (HMO) nanoparticles: behavior and mechanism. Science of the Total Environment, 616, 1298–1306.

    Article  Google Scholar 

  • WHO/FAO. (2016). General standard for contaminants and toxins in food and feed. Rome: Food and Agriculture Organization, World Health Organization.

    Google Scholar 

  • Xu, C., He, S., Liu, Y., Zhang, W., & Lu, D. (2017). Bioadsorption and biostabilization of cadmium by Enterobacter cloacae TU. Chemosphere, 173, 622–629.

    Article  CAS  Google Scholar 

  • Yu, Y., Yu, L., Koh, K. Y., Wang, C., & Chen, J. P. (2018). Rare-earth metal based adsorbents for effective removal of arsenic from water: a critical review. Critical Reviews in Environmental Science and Technology, 48, 1127–1164.

    Article  CAS  Google Scholar 

Download references

Funding

The authors are thankful to the Government College University, Faisalabad, and Higher Education Commission (HEC) of Pakistan for the financial support (5634/Punjab/NRPU/R&D/HEC/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Rizwan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irshad, M.A., Shakoor, M.B., Ali, S. et al. Synthesis and Application of Titanium Dioxide Nanoparticles for Removal of Cadmium from Wastewater: Kinetic and Equilibrium Study. Water Air Soil Pollut 230, 278 (2019). https://doi.org/10.1007/s11270-019-4321-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4321-8

Keywords

Navigation