Skip to main content

Advertisement

Log in

Fate of Bulk Organic Matter, Nitrogen, and Pharmaceutically Active Compounds in Batch Experiments Simulating Soil Aquifer Treatment (SAT) Using Primary Effluent

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Reduction of bulk organic matter, nitrogen, and pharmaceutically active compounds from primary effluent during managed aquifer recharge was investigated using laboratory-scale batch reactors. Biologically stable batch reactors were spiked with different concentrations of sodium azide to inhibit biological activity and probe the effect of microbial activity on attenuation of various pollutants of concern. The experimental results obtained revealed that removal of dissolved organic carbon correlated with active microbial biomass. Furthermore, addition of 2 mM of sodium azide affected nitrite-oxidizing bacteria leading to accumulation of nitrite-nitrogen in the reactors while an ammonium-nitrogen reduction of 95.5 % was achieved. Removal efficiencies of the hydrophilic neutral compounds phenacetin, paracetamol, and caffeine were independent of the extent of the active microbial biomass and were >90 % in all reactors, whereas removal of pentoxifylline was dependent on the biological stability of the reactor. However, hydrophobic ionic compounds exhibited removal efficiency >80 % in batch reactors with the highest biological activity as evidenced by high concentration of adenosine triphosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abel, C. D. T., Sharma, S. K., Malolo, Y. N., Maeng, S. K., Kennedy, M. D., & Amy, G. L. (2012). Attenuation of bulk organic matter, nutrients (N and P), and pathogen indicators during soil passage: effect of temperature and redox conditions in simulated soil aquifer treatment (SAT). Water, Air, and Soil Pollution, 223, 5205–5220.

    Article  CAS  Google Scholar 

  • Amy, G. L., & Drewes, J. (2007). Soil aquifer treatment (SAT) as a natural and sustainable wastewater reclamation/reuse technology: fate of wastewater effluent organic matter (EfOM) and trace organic compounds. Environmental Monitoring and Assessment, 129(1), 19–26.

    Article  CAS  Google Scholar 

  • Baker, A. (2001). Fluorescence excitation–emission matrix characterization of some sewage-impacted rivers. Environmental Science and Technology, 35(5), 948–953.

    Article  CAS  Google Scholar 

  • Barker, D., Salvi, S., Langenhoff, A., & Stuckey, D. (2000). Soluble microbial products in ABR treating low-strength wastewater. Journal of Environmental Engineering, 126(3), 239–249.

    Article  CAS  Google Scholar 

  • Bedding, N., McIntyre, A., Perry, R., & Lester, J. (1983). Organic contaminants in the aquatic environment II. Behaviour and fate in the hydrological cycle. The Science of the Total Environment, 26(3), 255–312.

    Article  CAS  Google Scholar 

  • Bouwer, E., McCarty, P., & Lance, J. (1981). Trace organic behavior in soil columns during rapid infiltration of secondary wastewater. Water Research, 15(1), 151–159.

    Article  CAS  Google Scholar 

  • Carballa, M., Omil, F., Lema, J. M., Llompart, M., García-Jares, C., Rodríguez, I., et al. (2004). Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research, 38(12), 2918–2926.

    Article  CAS  Google Scholar 

  • Cha, W., Fox, P., Mir, F., & Choi, H. (2004). Characteristics of biotic and abiotic removals of dissolved organic carbon in wastewater effluents using soil batch reactors. Water Environment Research, 76(2), 130–136.

    Article  CAS  Google Scholar 

  • Comerton, A. M., Andrews, R. C., & Bagley, D. M. (2009). Practical overview of analytical methods for endocrine-disrupting compounds, pharmaceuticals and personal care products in water and wastewater. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1904), 3923–3939.

    Article  CAS  Google Scholar 

  • Crites, R. W., Reed, S. C., & Middlebrooks, E. J. (2006). Natural wastewater treatment systems (pp. 413–426). Boca Raton: CRC.

    Google Scholar 

  • Díaz-Cruz, M., & Barceló, D. (2008). Trace organic chemicals contamination in ground water recharge. Chemosphere, 72(3), 333–342.

    Article  Google Scholar 

  • Drillia, P., Stamatelatou, K., & Lyberatos, G. (2005). Fate and mobility of pharmaceuticals in solid matrices. Chemosphere, 60(8), 1034–1044.

    Article  CAS  Google Scholar 

  • Eaton, A. D., Clesceri, L. S., Rice, E. W., & Greenberg, A. E. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington: American Public Health Association, American Water Works Association, and Water Environment Federation.

    Google Scholar 

  • Fox, P., Houston, S., & Westerhoff, P. (2001a). Soil aquifer treatment for sustainable water reuse. American Water Works Association Research. Denver: Foundation.

    Google Scholar 

  • Fox, P., Houston, S., Westerhoff, P., Drewes, J., Nellor, M., Yanko, B., Baird, R., Rincon, M., Arnold, R. & Lansey, K. (2001b). An investigation of soil-aquifer treatment for sustainable water reuse. Research project summary. National Center for Sustainable Water Supply (NCSWS), Tempe

  • Gruenheid, S., Amy, G., & Jekel, M. (2005). Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge. Water Research, 39(14), 3219–3228.

    Article  CAS  Google Scholar 

  • Heberer, T. (2002). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters, 131(1–2), 5–17.

    Article  CAS  Google Scholar 

  • Heberer, T., Reddersen, K., & Mechlinski, A. (2002). From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas. Water Science and Technology, 46(3), 81–88.

    CAS  Google Scholar 

  • Idelovitch, E., Icekson-Tal, N., Avraham, O., & Michail, M. (2003). The long-term performance of soil aquifer treatment (SAT) for effluent reuse. Water Science and Technology: Water Supply, 3(4), 239–246.

    CAS  Google Scholar 

  • Johnson, A. C., & Sumpter, J. P. (2001). Removal of endocrine-disrupting chemicals in activated sludge treatment works. Environmental Science and Technology, 35(24), 4697–4703.

    Article  CAS  Google Scholar 

  • Jones, O., Voulvoulis, N., & Lester, J. (2005). Human pharmaceuticals in wastewater treatment processes. Critical Reviews in Environmental Science and Technology, 35(4), 401–427.

    Article  CAS  Google Scholar 

  • Kanarek, A., & Michail, M. (1996). Groundwater recharge with municipal effluent: Dan Region Reclamation Project, Israel. Water Science and Technology, 34(11), 227–233.

    Article  CAS  Google Scholar 

  • Laangmark, J., Storey, M., Ashbolt, N., & Stenstroem, T. (2004). Artificial groundwater treatment: biofilm activity and organic carbon removal performance. Water Research, 38(3), 740–748.

    Article  Google Scholar 

  • Maeng, S., Sharma, S., Magic-Knezev, A., & Amy, G. L. (2008). Fate of effluent organic matter (EfOM) and natural organic matter (NOM) through riverbank filtration. Water Science and Technology, 57(12), 1999.

    Article  CAS  Google Scholar 

  • Maeng, S. K., Sharma, S. K., Abel, C. D. T., Magic-Knezev, A., & Amy, G. L. (2011). Role of biodegradation in the removal of pharmaceutically active compounds with different bulk organic matter characteristics through managed aquifer recharge: batch and column studies. Water Research, 45(16), 4722–4736.

    Article  CAS  Google Scholar 

  • Maeng, S. K., Abel, C. D. T., Sharma, S. K., Park, N. S., & Amy, G. L. (2012a). Removal of geosmin and 2-methylisoborneol during managed aquifer recharge: batch and column studies. Journal of Water Supply Research and Technology-AQUA, 61(4), 220–227.

    Article  CAS  Google Scholar 

  • Maeng, S. K., Sharma, S. K., Abel, C. D. T., Magic-Knezev, A., Song, K. G., & Amy, G. L. (2012b). Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: column study. Journal of Contaminant Hydrology, 140–141, 139–149.

    Article  Google Scholar 

  • Magic-Knezev, A., & der Kooij, D. (2004). Optimisation and significance of ATP analysis for measuring active biomass in granular activated carbon filters used in water treatment. Water Research, 38(18), 3971–3979.

    Article  CAS  Google Scholar 

  • McCarthy, J. F., Williams, T. M., Liang, L., Jardine, P. M., Jolley, L. W., Taylor, D. L., et al. (1993). Mobility of natural organic matter in a study aquifer. Environmental Science and Technology, 27(4), 667–676.

    Article  CAS  Google Scholar 

  • Metcalfe, C. D., Koenig, B. G., Bennie, D. T., Servos, M., Ternes, T. A., & Hirsch, R. (2003). Occurrence of neutral and acidic drugs in the effluents of Canadian sewage treatment plants. Environmental Toxicology and Chemistry, 22(12), 2872–2880.

    Article  CAS  Google Scholar 

  • Miège, C., Choubert, J. M., Ribeiro, L., Eusèbe, M., & Coquery, M. (2009). Fate of pharmaceuticals and personal care products in wastewater treatment plants—conception of a database and first results. Environmental Pollution, 157(5), 1721–1726.

    Article  Google Scholar 

  • Nema, P., Ojha, C., Kumar, A., & Khanna, P. (2001). Techno-economic evaluation of soil-aquifer treatment using primary effluent at Ahmedabad, India. Water Research, 35(9), 2179–2190.

    Article  CAS  Google Scholar 

  • Quanrud, D., Arnold, R., Wilson, L., & Conklin, M. (1996a). Effect of soil type on water quality improvement during soil aquifer treatment. Water Science and Technology, 33(10), 419–432.

    Article  CAS  Google Scholar 

  • Quanrud, D., Arnold, R., Wilson, L., Gordon, H., Graham, D., & Amy, G. L. (1996b). Fate of organics during column studies of soil aquifer treatment. Journal of Environmental Engineering, 133(4), 314–321.

    Article  Google Scholar 

  • Rauch, T., & Drewes, J. (2004). Assessing the removal potential of soil-aquifer treatment systems for bulk organic matter. Water Science and Technology, 50(2), 245–253.

    CAS  Google Scholar 

  • Rauch, T., & Drewes, J. (2005). Quantifying biological organic carbon removal in groundwater recharge systems. Journal of Environmental Engineering, 131(6), 909–923.

    Article  CAS  Google Scholar 

  • Reif, R., Suárez, S., Omil, F., & Lema, J. (2008). Fate of pharmaceuticals and cosmetic ingredients during the operation of a MBR treating sewage. Desalination, 221(1–3), 511–517.

    Article  CAS  Google Scholar 

  • Sacher, F., Ehmann, M., Gabriel, S., Graf, C., & Brauch, H. (2008). Pharmaceutical residues in the river Rhine—results of a one-decade monitoring programme. Journal of Environmental Monitoring, 10(5), 664–670.

    Article  CAS  Google Scholar 

  • Sedlak, R. (1991). Phosphorus and nitrogen removal from municipal wastewater: principles and practice. Boca Raton: CRC.

    Google Scholar 

  • Sharma, S. K., & Amy, G. L. (2010). Natural treatment systems. In Water quality and treatment: a handbook on drinking water, J. K. Edzwald (Ed.), (6th ed.) (pp. 15.1–15.33). American Water Works Association and McGraw-Hill.

  • Sharma, S. K., Hussen, M., & Amy, G. L. (2011a). Soil aquifer treatment using advanced primary effluent. Water Science and Technology, 64(3), 640–646.

    Article  CAS  Google Scholar 

  • Sharma, S. K., Maeng, S. K., Nam, S.-N., & Amy, G. L. (2011b). Characterization tools for differentiating NOM from EfOM. In W. Peter (Ed.), In Treatise on water science. Aquatic chemistry and microbiology (Volume 3, pp. 417–427). Oxford: Elsevier.

  • Smith, V. H. (2003). Eutrophication of freshwater and coastal marine ecosystems: a global problem. Environmental Science and Pollution Research, 10(2), 126–139.

    Article  CAS  Google Scholar 

  • Ternes, T. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 32(11), 3245–3260.

    Article  CAS  Google Scholar 

  • Tixier, C., Singer, H. P., Oellers, S., & Müller, S. R. (2003). Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environmental Science and Technology, 37(6), 1061–1068.

    Article  CAS  Google Scholar 

  • Trulleyova, S., & Rulik, M. (2004). Determination of biodegradable dissolved organic carbon in waters: comparison of batch methods. Science of the Total Environment, 332(1), 253–260.

    Article  CAS  Google Scholar 

  • Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380(1–3), 48–65.

    Article  CAS  Google Scholar 

  • Westerhoff, P., & Pinney, M. (2000). Dissolved organic carbon transformations during laboratory-scale groundwater recharge using lagoon-treated wastewater. Waste Management, 20(1), 75–83.

    Article  CAS  Google Scholar 

  • Wilson, L., Amy, G., Gerba, C., Gordon, H., Johnson, B., & Miller, J. (1995). Water quality changes during soil aquifer treatment of tertiary effluent. Water Environment Research, 67(3), 371–376.

    Article  CAS  Google Scholar 

  • Xue, S., Zhao, Q., Wei, L., & Ren, N. (2009). Behavior and characteristics of dissolved organic matter during column studies of soil aquifer treatment. Water Research, 43(2), 499–507.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was conducted under the financial support of the UNESCO-IHE Partnership Research Fund (UPaRF) through NATSYS project no. 32019417. We are thankful to UNESCO-IHE laboratory staff and Dr. Frank Sacher (TechnologiezentrumWasser (TZW), Karlsruhe, Germany) for their analytical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chol D. T. Abel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abel, C.D.T., Sharma, S.K., Maeng, S.K. et al. Fate of Bulk Organic Matter, Nitrogen, and Pharmaceutically Active Compounds in Batch Experiments Simulating Soil Aquifer Treatment (SAT) Using Primary Effluent. Water Air Soil Pollut 224, 1628 (2013). https://doi.org/10.1007/s11270-013-1628-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1628-8

Keywords

Navigation