Skip to main content

Advertisement

Log in

Bioremediation of Mangroves Impacted by Petroleum

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The majority of oil from oceanic oil spills (e.g. the recent accident in the Gulf of Mexico) converges on coastal ecosystems such as mangroves. Microorganisms are directly involved in biogeochemical cycles as key drivers of the degradation of many carbon sources, including petroleum hydrocarbons. When properly understood and managed, microorganisms provide a wide range of ecosystem services, such as bioremediation, and are a promising alternative for the recovery of impacted environments. Previous studies have been conducted with emphasis on developing and selecting strategies for bioremediation of mangroves, mostly in vitro, with few field applications described in the literature. Many factors can affect the success of bioremediation of oil in mangroves, including the presence and activity of the oil-degrading microorganisms in the sediment, availability and concentration of oil and nutrients, salinity, temperature and oil toxicity. More studies are needed to provide efficient bioremediation strategies to be applicable in large areas of mangroves impacted with oil. A major challenge to mangrove bioremediation is defining pollution levels and measuring recuperation of a mangrove. Typically, chemical parameters of pollution levels, such as polycyclic aromatic hydrocarbons (PAHs), are used but are extremely variable in field measurements. Therefore, meaningful mangrove monitoring strategies must be developed. This review will present the state of the art of bioremediation in oil-contaminated mangroves, new data about the use of different mangrove microcosms with and without tide simulation, the main factors that influence the success of bioremediation in mangroves and new prospects for the use of molecular tools to monitor the bioremediation process. We believe that in some environments, such as mangroves, bioremediation may be the most appropriate approach for cleanup. Because of the peculiarities and heterogeneity of these environments, which hinder the use of other physical and chemical analyses, we suggest that measuring plant recuperation should be considered with reduction in polycyclic aromatic hydrocarbons (PAHs). This is a crucial discussion because these key marine environments are threatened with worldwide disappearance. We highlight the need for and suggest new ways to conserve, protect and restore these environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aksornkoae, S., Arroyo, C., Blasco, F., Burbridge, P. R., Tuck, C. H., Cintron, G., et al. (1984). Handbook for mangrove area management (p. 256). Honolulu: United Nations Environment Program and East-West Center, Environment and Policy Institute.

    Google Scholar 

  • Alexander, M. (1994). Biodegradation and Bioremediation. San Diego: Academic.

    Google Scholar 

  • Alongi, D. M. (2002). Present state and future of the world's mangrove forests. Australian Institute Marine Science, 29, 331–349.

    Google Scholar 

  • AMSA 2006. The response to the Global Peace oil spill—Report of the Incident Analysis Team, Australian Maritime Safety Authority.

  • Andersen, L. E., Melville, F., & Jolley, D. (2008). An assessment of an oil spill in Gladstone, Australia - impacts on intertidal areas at one month post-spill. Marine Pollution Bulletin, 57, 607–615.

    CAS  Google Scholar 

  • Aniszewski, E., Peixoto, R. S., Mota, F. F., Leite, S. G. F., & Rosado, A. S. (2010). Bioemulsifier production by Microbacterium sp. strains isolated from mangrove and their application to remove cadmiun and zinc from hazardous industrial residue. Brazilian Journal Microbiology, 41(1), 235–245.

    Google Scholar 

  • ANZECC/ARMCANZ (2000). Sediment quality guidelines, Australia and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand.

  • Atlas, R. M. (1981). Microbial degradation of petroleum hydrocarbons: An environmental perspective. Microbiological Reviews, 45, 180–209.

    CAS  Google Scholar 

  • Atlas, R. M. (1994). Microbial hydrocarbon degradation-bioremediation of soil spills. Journal of Chemical Technology and Biotechnology, 52, 149–156.

    Google Scholar 

  • Atlas, R. M., & Bartha, R. (1992). Hydrocarbon biodegradation and oil spill bioremediation. In K. C. Marshali (Ed.), Advances in Microbial Ecology Vol. 13 (pp. 287–338). London: Plenum Press.

    Google Scholar 

  • Bae, J. W., & Park, Y. H. (2006). Homogeneous versus heterogeneous probes for microbial ecological microarrays. Trends in Biotechnology, 24, 318–323.

    CAS  Google Scholar 

  • Balba, M. T., Al-Awadhi, N., & Al-Daher, R. (1998). Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. Journal of Microbiological Methods, 32, 155–164.

    CAS  Google Scholar 

  • Balks, M. R., Paetzold, R. F., Kimble, J. M., Aislabie, J., & Campbell, I. B. (2002). Effects of hydrocarbon spills on the temperature and moisture regimes of cryosols in the Ross Sea region. Antarctic Science, 14, 319–326.

    Google Scholar 

  • Barbier, E. B., Koch, E. W., Siliman, B. R., Hacker, S. D., Wolanski, E., & Primavera, J. (2008). Coastal ecosystem-based management with nonlinear ecological functions and values. Science, 318, 321–323.

    Google Scholar 

  • Barcelona, M. J., Holm, T. R., Schock, M. R., & George, G. K. (1989). Spatial and temporal radients in aquifer oxidation—reduction conditions. Water Research, 25, 991–1003.

    CAS  Google Scholar 

  • Boopathy, R. (2003). Anaerobic degradation of no. 2 diesel fuel in the wetland sediments of Barataria-Terrebonne estudary under various electron acceptor conditions. Bioresource Technology, 86, 171–175.

    CAS  Google Scholar 

  • Bordoloi, N. K., & Konwar, B. K. (2009). Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons. Journal of Hazardous Materials, 170, 495–505.

    CAS  Google Scholar 

  • Bouchez, M., Blanchet, D., & Vandecasteele, J. P. (1995). Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism. Applied Microbiology and Biotechnology, 43, 156–164.

    CAS  Google Scholar 

  • Bressler, D. C., & Gray, M. R. (2003). Transport and reaction processes in bioremediation of organic contaminants. Review of bacterial degradation and transport. International Journal of Chemical Reaction Engineering, 1, R3.

    Google Scholar 

  • Brito, E. M., Duran, R., Guyoneaud, R., Goni-Urriza, M., Garcia de Oteyza, T., Crapez, M. A., et al. (2009). A case study of in situ oil contamination in a mangrove swamp (Rio De Janeiro, Brazil). Marine Pollution Bulletin, 58, 418–423.

    CAS  Google Scholar 

  • Brito, E. M., Guyoneaud, R., Goñi-Urriza, M., Ranchou-Peyruse, A., Verbaere, A., Crapez, M. A. C., et al. (2006). Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil. Research in Microbiology, 157, 752–762.

    CAS  Google Scholar 

  • Burland, S. M., & Edwards, E. A. (1999). Anaerobic benzene biodegradation linked to nitrate reduction. Applied and Environment Microbiology, 65, 529–533.

    CAS  Google Scholar 

  • Burns, K. A., & Codi, S. (1998). Contrasting impacts of localized versus catastrophic oil spills in mangrove sediments. Mangrove and Salt Marshes, 2, 63–74.

    Google Scholar 

  • Burns, K. A., Codi, S., & Duke, N. C. (2000). Gladstone, Australia Field Studies: Weathering and Degradation of Hydrocarbons in Oiled Mangrove and Salt Marsh Sediments With and Without the Application of an Experimental Bioremediation Protocol. Marine Pollution Bulletin, 41, 392–402.

    CAS  Google Scholar 

  • Burns, K. A., Codi, S., Pratt, C., & Duke, N. C. (1999). Weathering of hydrocarbons in mangrove sediments: Testing the effects of using dispersant to treat oil spills. Organic Geochemistry, 30, 1273–1286.

    CAS  Google Scholar 

  • Burns, K. A., Levings, S., & Garrity, S. (1993). How many years before mangrove ecosystems recover from catastrophic oil spills? Marine Pollution Bulletin, 26, 239–248.

    CAS  Google Scholar 

  • Burns, K. A., & Teal, J. M. (1979). The West Falmouth oil spill: Hydrocarbons in the salt marsh ecosystem. Estuarine and Coastal Marine Science, 8, 349–360.

    CAS  Google Scholar 

  • Cerniglia, C. E. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3, 351–368.

    CAS  Google Scholar 

  • Chan, S. M. N., Luan, T. G., & Wong, M. H. (2006). Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum. Environmental Toxicology and Chemistry, 25(7), 1772–1779.

    CAS  Google Scholar 

  • Chaneau, C. H., Morel, J., Dupont, J., Bury, E., & Oudot, J. (1999). Comparison of the fuel oil biodegradation potential of hydrocarbon assimilating microorganisms isolated from a temperate agricultural soil. The Science of the Total Environment, 227, 237–247.

    Google Scholar 

  • Chang, B. V., Chang, I. T., & Yuan, S. Y. (2008). Anaerobic degradation of phenanthrene and pyrene in mangrove sediment. Bulletin of Environmental Contamination and Toxicology, 80, 145–149.

    CAS  Google Scholar 

  • Chang, M. C., Shu, H. Y., Hsieh, W. P., & Wang, M. C. (2007). Remediation of soil contaminated with pyrene using ground nanoscale zero valent iron. Journal of the Air & Waste Management Association, 57, 221–227.

    Google Scholar 

  • Chen, J., Wong, M. H., Wong, Y. S., & Tam, N. F. (2008). Multi-factors on biodegradation kinetics of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas sp. a bacterial strain isolated from mangrove sediment. Marine Pollution Bulletin, 57, 695–702.

    CAS  Google Scholar 

  • Cho, J. C., & Kim, S. J. (2001). Detection of megaplasmid from polycyclic aromatic hydrocarbon—degrading Sphingomonas sp. strain 14. Journal of Molecular Microbiology and Biotechnology, 3, 503–506.

    CAS  Google Scholar 

  • Coates, J. D., & Anderson, R. T. (2000). Emerging techniques for anaerobic bioremediation of contaminated environments. Trends in Biotechnology, 18, 408–412.

    CAS  Google Scholar 

  • Conte, P., Agretto, A., Spaccini, R., & Piccolo, A. (2005). Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils. Environmental Pollution, 135, 515–522.

    CAS  Google Scholar 

  • Conte, P., Zena, A., Pilidis, G., & Piccolo, A. (2001). Increased retention of polycyclic aromatic hydrocarbons in soils induced by soil treatment with humic substances. Environmental Pollution, 112, 27–31.

    CAS  Google Scholar 

  • Copley, J. (2000). Ecology goes underground. Nature, 406, 452–454.

    CAS  Google Scholar 

  • Corredor, J. E., Morell, J. M., & Del Castillo, C. E. (1990). Persistence of spilled crude oil in a tropical intertidal environment. Marine Pollution Bulletin, 21, 385–388.

    CAS  Google Scholar 

  • Crápez, M. A. C., Borges, A. L. N., Bispo, M. G. S., & Prereira, D. C. (2002). Tratamento para derrames de petróleo. Ciência Hoje, 30(179), 32–37.

    Google Scholar 

  • Cunha, C. D., & Leite, S. G. F. (2000). Gasoline Biodegradation in different soil microcosms. Brazilian Journal of Microbiology, 31, 45–49.

    Google Scholar 

  • Cuypers, C. (2001). Bioavailability of polycyclic aromatic hydrocarbons in soils and sediments: Prediction of bioavailability and characterization of organic matter domains. Ph.D. thesis, Wageningen University, Wageningen, Netherlands. p 161

  • Das, S., Lyla, P. S., & Ajmal Khan, S. (2006). Marine microbial diversity and ecology:importance and future perspectives. Current Science, 90, 1325–1335.

    CAS  Google Scholar 

  • Dean-Ross, D., Moody, J., & Cerniglia, C. E. (2002). Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiology Ecology, 41, 1–7.

    CAS  Google Scholar 

  • Desai, C., Pathak, H., & Madamwar, D. (2010). Advances in molecular and “-omics” technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Bioresource Technology, 101(6), 1558–1569.

    CAS  Google Scholar 

  • Dibble, J. T., & Bartha, R. (1979). Effect of environmental parameters on the biodegradation of oil sludge. Applied and Environmental Microbiology, 37, 729–739.

    CAS  Google Scholar 

  • Distefano, T. D., Gossett, J. M., & Zinder, S. H. (1992). Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture. Applied and Environmental Microbiology, 58, 3622–3629.

    CAS  Google Scholar 

  • Dott, W., Feidieker, D., Kampfer, P., Schleibinger, H., & Strechel, S. (1989). Comparison of autochthonous bacteria and commercially available cultures with respect to their effectiveness in fuel-oil degradation. Journal of Industrial Microbiology, 4, 365–373.

    Google Scholar 

  • Duke, N. C., Burns, K. A., Swannell, R. P. J., Dalhaus, O., & Rupp, R. J. (2000). Dispersant use and a bioremediation strategy as alternate means of reducing impacts of large oil spills on mangroves: the Gladstone Field Trials. Marine Pollution Bulletin, 41, 403–412.

    CAS  Google Scholar 

  • Duke, N. C., Meynecke, J. O., Dittmann, S., Ellison, A. M., Anger, K., Berguer, U., et al. (2007). A world without mangroves? Science, 317, 41–42.

    CAS  Google Scholar 

  • Duke, N. C., Pinzon, Z. S., & Prada, M. C. (1997). Large-scale damage to mangrove forests following two large oil spills in Panama. Biotropica, 29, 2–14.

    Google Scholar 

  • Garrity, S. D., Levings, S. C., & Burns, K. A. (1994). The Galleta oil spill. I. Long-term effects on the physical structure of the Mangrove fringe. Estuarine, Coastal and Shelf Science, 38, 327–348.

    Google Scholar 

  • Gibson, D. T., Mahadevan, V., Jerina, R. M., Yagi, H., & Yeh, H. J. C. (1975). Oxidation of the carcinogens benzo[a] pyrene and dibenz[a, h] anthracene to dihydrodiols by a bacterium. Science, 189, 295–297.

    CAS  Google Scholar 

  • Gomes, N. M., Borges, L. R., Paranhos, R., Pinto, F. N., Mensonça-Hagler, L., & Smalla, K. (2008). Exploring the diversity of bacterial communities in sediments of urban mangrove forests. FEMS Microbiology Ecology, 66(1), 96–109.

    CAS  Google Scholar 

  • Guo, C. L., Zhou, H. W., Wong, Y. S., & Tam, N. F. Y. (2005). Isolation of PAH-degrading bacteria from mangrove sediments and their biodegradation potential. Marine Pollution Bulletin, 51, 1054–1061.

    CAS  Google Scholar 

  • Harbison, P. (1986). Mangrove muds—A sink and a source for trace metals. Marine Pollution Bulletin, 17, 246–250.

    CAS  Google Scholar 

  • He, Z., Gentry, T. J., Schadt, C. W., Wu, L., Liebich, J., & Chong, S. C. (2007). GeoChip: A comprehensive microarray for investigating biogeochemical, ecological and environmental processes. The ISME Journal, 1, 67–77.

    CAS  Google Scholar 

  • Heider, J., Spormann, A. M., Beller, H. R., & Widdel, F. (1999). Anaerobic Bacterial Metabolism of Hydrocarbons. FEMS Microbiology Reviews, 22, 459–473.

    Google Scholar 

  • Holguin, G. V. P., & Bashan, Y. (2001). The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biology and Fertility of Soils, 33, 265–278.

    CAS  Google Scholar 

  • Hong, Y. W., Yuan, D. X., Lin, Q. M., & Yang, T. L. (2008). Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Marine Pollution Bulletin, 56, 1400–1405.

    CAS  Google Scholar 

  • Hughes, J. B., Beckles, D. M., Chandra, S. D., & Ward, C. H. (1997). Utilization of bioremediation processes for the treatment of PAH-contaminated sediments. Journal of Industrial Microbiology & Biotechnology, 18, 152–160.

    CAS  Google Scholar 

  • Hwang, H., Hu, X., & Zhao, X. (2007). Enhanced bioremediation of polycyclic aromatic hydrocarbons by environmentally friendly techniques. Journal of Environmental Science and Health, 25, 313–352.

    CAS  Google Scholar 

  • IPIECA-International Petroleum Industry Environmental Conservation Association. (1993). Biological impacts of oil pollution: Mangroves, vol. 4 (p. 20). London: IPIECA. Report series.

    Google Scholar 

  • Jahan, K., Ahmed, T., & Maier, W. J. (1997). Phenanthrene mineralization in soil in the presence of nonionic surfactants. Toxicological and Environmental Chemistry, 64, 127–143.

    CAS  Google Scholar 

  • Jimenez, I. Y., & Bartha, R. (1996). Solvent-augmented mineralization of pyrene by a Mycobacterium sp. Applied and Environmental Microbiology, 62, 2311–2316.

    CAS  Google Scholar 

  • Juhasz, A. L., & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. International Biodeterioration and Biodegradation, 45, 57–88.

    CAS  Google Scholar 

  • Kamath, R., Rentz, J. A., Schnoor, J. L., & Alvarez, P. J. J. (2004). Phytoremediation of hydrocarbon-contaminated soils: principles and applications. In R. Vazquez-Duhalt & R. Quintero-Ramirez (Eds.), Petroleum Biotechnology: Developments and Perspectives Studies in Surface Science and Catalysis (pp. 447–478). Oxford: Elsevier Science.

    Google Scholar 

  • Kanaly, R. A., Bartha, R., Watanabe, K., & Harayama, S. (2000). Rapid mineralization of benzo[a]pyrene by a microbial consortium growing on diesel fuel. Applied and Environmental Microbiology, 66, 4205–4211.

    CAS  Google Scholar 

  • Kastner, M., Breuer-Jammali, M., & Mahro, B. (1998). Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Applied and Environmental Microbiology, 64, 359–362.

    CAS  Google Scholar 

  • Kathiresan, K., & Qasim, S. Z. (2005). Biodiversity of Mangrove Ecosystems (p. 251). New Delhi: Hindustan Publishing Corporation.

    Google Scholar 

  • Ke, L., Wang, W. Q., Wong, T. W. Y., Wong, Y. S., & Tam, N. F. Y. (2003). Removal of pyrene from contaminated sediments by mangrove microcosms. Chemosphere, 51, 25–34.

    CAS  Google Scholar 

  • Ke, L., Yu, K. S., Wong, Y. S., & Tam, N. F. (2005). Spatial and vertical distribution of polycyclic aromatic hydrocarbons in mangrove sediments. The Science of the Total Environment, 340, 177–187.

    CAS  Google Scholar 

  • Kiyohara, H., Torigoe, S., & Kaida, N. (1994). Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. Journal of Bacteriology, 176, 2439–2443.

    CAS  Google Scholar 

  • Korda, A., Santas, P., Tenente, A., & Santas, R. (1997). Petroleum hydrocarbon bioremediation: sampling and analytical techniques, in situ treatments and commercial microorganisms currently used. Applied Microbiology and Biotechnology, 48, 677–686.

    CAS  Google Scholar 

  • Kothamasi, D., Kothamasi, S., Bhattacharyya, A., Kuhad, R. C., & Babu, C. R. (2006). Arbuscular mycorrhizae and phosphate solubilising bacteria of the rhizosphere of the mangrove ecosystem of Great Nicobar island, India. Biology and Fertility of Soils, 42, 358–361.

    Google Scholar 

  • Kristensen, E., & Alongi, D. M. (2006). Control by fiddler crabs (Uca vocans) and plant roots (Avicennia marina) on carbon, iron and sulfur biogeochemistry in mangrove sediment. Limnology and Oceanography, 51, 1557–1571.

    CAS  Google Scholar 

  • Kristensen, E. B. S., Dittmar, T., & Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems: A review. Aquatic Botany, 89, 201–219.

    CAS  Google Scholar 

  • Kristensen, E., King, G. M., Holmer, M., Banta, G. T., Jensen, M. H., Hansen, K., et al. (1994). Sulfate reduction, acetate turnover and carbon metabolism in sediments of the Ao-Nam-Bor mangrove, Phuket, Thailand. Marine Ecology Progress Series, 109, 245–255.

    CAS  Google Scholar 

  • Kuznetsov, A. M., & Ulstrup, J. (1988). Electron transfer in chemistry and biology: an introduction to the theory. New York: Wiley.

    Google Scholar 

  • Laha, S. L. Z., Edwards, D. A., & Luthy, R. G. (1995). Surfactant solubilization of phenanthrene in soil-aqueous systems and its effects on bioremediation. Aquatic Chemistry, 244, 339–361.

    CAS  Google Scholar 

  • Launen, L. A., Buggs, V. H., Eastep, M. E., Enriquez, R. C., Leonard, J. W., & Blaylock, M. J. (2002). Bioremediation of polyaromatic hydrocarbon-contaminated sediments in aerated bioslurry reactors. Bioremediation Journal, 6, 125–141.

    CAS  Google Scholar 

  • Leahy, J. G., & Colwell, R. R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiological Reviews, 54, 305–315.

    CAS  Google Scholar 

  • Lee, S. Y., Dunn, R. J. K., Young, R. A., Connolly, R. M., Dale, P. E. R., & Dehayr, R. (2006). Impact of urbanization on coastal wetland structure and function. Austral Ecology, 31, 149–163.

    Google Scholar 

  • Lee, K., Tremblay, G. H., Levy, E. M. (1993). Bioremediation: application of slow-release fertilizers on low-energy shorelines. In: Proceedings of the 1993 Oil Spill Conference. American Petroleum Institute. Washington, DC. pp 449–454

  • Levett, P. N. (1990). Anaerobic bacteria: a functional biology (pp. 15–26). Milton Keynes: Open University Press.

    Google Scholar 

  • Li, H., Zhao, Q., Boudfadel, M. C., & Venosa, A. (2007). A universal nutrient application strategy for bioremediation of oil-polluted beaches. Marine Pollution Bulletin, 54, 1146–1161.

    CAS  Google Scholar 

  • Li, C. H., Zhou, H. W., Wong, Y. S., & Tam, N. F. (2009). Vertical distribution and anaerobic biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments in Hong Kong, South China. Science of The Total Environment, 21(407), 5772–5779.

    Google Scholar 

  • Lim, S. P., Gan, S. N., & Tan, I. K. P. (2005). Degradation of medium-chain-length polyhydroxyalkanoates in tropical forest and mangrove soils. Applied and Environmental Microbiology, 126, 23–33.

    CAS  Google Scholar 

  • Lin, Y., & Cai, L. X. (2008). PAH-degrading microbial consortium and its pyrene-degrading plasmids from mangrove sediment samples in Huian, China. Marine Pollution Bulletin, 57, 703–706.

    CAS  Google Scholar 

  • Long, E. R., & MacDonald, D. D. (1998). Recommended uses of empirically derived sediment quality guidelines for marine and estuarine ecosystems. Human & Ecological Risk Assessment, 4(5), 1019–1039.

    Google Scholar 

  • Long, E. R., MacDonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19(1), 81–97.

    Google Scholar 

  • Lovely, D. R., & Philips, Z. J. P. (1988). Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology, 54, 1472–1480.

    Google Scholar 

  • Luan, T. G., Yu, K. S. H., Zhong, Y., Zhou, H. W., Lan, C. Y., & Tam, N. F. Y. (2006). Study of metabolites from the degradation of polycyclic aromatic hydrocarbons (PAHs) by bacterial consortium enriched from mangrove sediments. Chemosphere, 65, 2289–2296.

    CAS  Google Scholar 

  • Luo, W., Fan, W., Xie, H., Jing, L., Ricicki, E., Vouros, P., et al. (2005). Phenotypic anchoring of global gene expression profiles induced by N-hydroxy-4-acetylaminobiphenyl and benzo[a]pyrene diol epoxide reveals correlations between expression profiles and mechanism of toxicity. Chemical Research in Toxicology, 18, 619–629.

    CAS  Google Scholar 

  • Luthy, R. G., Aiken, G. R., Brusseau, M. L., Cunningham, S. D., Gschwend, P. M., Pignatello, J. J., et al. (1997). Sequestration of hydrophobic organic contaminants by geosorbents. Environmental Science & Technology, 37, 3341–3347.

    Google Scholar 

  • Lyimo, T. J., Pol, A., Harhangi, H. R., Jetten, M. S., & Op den Camp, H. J. (2009). Anaerobic oxidation of dimethylsulfide and methanethiol in mangrove sediments is dominated by sulfate-reducing bactéria. FEMS MIcrobiologycal Ecology, 70(3), 483–492.

    CAS  Google Scholar 

  • Lyimo, T. J., Pol, A., & Op den Camp, J. M. (2002). Methane emission, sulphate concentration and redox potential profiles in Mtoni mangrove sediment, Tanzania. Western Indian Ocean Journal of Marine Science, 1, 71–80.

    Google Scholar 

  • Maciel-Souza, M. C., Macrae, A., Volpon, A. G. T., Ferreira, P. S., & Mendonça-Hagler, L. C. (2006). Chemical and microbiological characterization of mangrove sediments after a large oil-spill in Guanabara Bay—RJ—Brazil. Brazilian Journal of Microbiology, 37, 262–266.

    CAS  Google Scholar 

  • Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annual Review of Genomics and Human Genetics, 9, 387–402.

    CAS  Google Scholar 

  • Margulies, M., Egholm, M., & Altman, W. E. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437, 376–380.

    CAS  Google Scholar 

  • Martin, H. G., Ivanova, N., Kunin, V., Warnecke, F., Barry, K. W., McHardy, A. C., et al. (2006). Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nature Biotechnology, 24, 1263–1269.

    CAS  Google Scholar 

  • McNally, D. L., & Mihelcic, J. R. (1999). Biodegradation of mixtures of polycyclic aromatic hydrocarbons under aerobic and nitrate-reducing conditions. Chemosphere, 38, 1313–1321.

    CAS  Google Scholar 

  • Melville, F., Andersen, L. E., & Jolley, D. F. (2009). The Gladstone (Australia) oil spill—impacts on intertidal areas: Baseline and six months post-spill. Marine Pollution Bulletin, 58, 263–271.

    CAS  Google Scholar 

  • Mendelssohn, I. A., & Lin, Q. (2003). The development of bioremediation for oil spill cleanup in coastal wetlands. New Orleans: U.S. Department of Interior. Minerals Management Service, Gulf of Mexico OCS Region.

    Google Scholar 

  • Menn, F. M., Applegate, B. M., & Sayler, G. S. (1993). NAH plasmid-mediated catabolism of anthracene and phenanthrenen to naphthoic acids. Applied and Environmental Microbiology, 59, 1938–1942.

    CAS  Google Scholar 

  • Michel, J. (2000). Assessment and Recommendations for the Oil Spill Cleanup of Guanabara Bay, Brazil. Spill Science and Technology Bulletin, 6(1), 89–96.

    Google Scholar 

  • Mille, G. M. D., Jacquot, F., Rivet, L., & Bertrand, J. C. (1998). The Amoco Cadiz oil spill: Evolution of petroleum hydrocarbons in the Ile Grande salt marshes (Brittany) after a 13-year period. Estuarine, Coastal and Shelf Science, 47, 547–559.

    CAS  Google Scholar 

  • Mnif, S., Chamkha, M., & Sayadi, S. (2009). Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions. Journal of Applied Microbiology, 107, 785–794.

    CAS  Google Scholar 

  • Mosbech, A. (2002). Potential Environmental Impacts of Oil Spills in Greenland: An Assessment of Information Status and Research Needs. NERI Technical Report No. 415. Denmark: National Environmental Research Institute, Ministry of the Environment.

    Google Scholar 

  • Muyzer, G., De Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695–700.

    CAS  Google Scholar 

  • Nansingh, P., & Jurawan, S. (1999). Envronmental sensivity of a tropical costlinine (Trindad, West Indies) to oil spills. Spill Science & Tecnology Bulletin, 5, 161–172.

    Google Scholar 

  • NOAA (2002). Oil Spills in Mangroves: Planning and response considerations. Washington, D.C.

  • Nyer, E. K. (1998). Groundwater and soil remediation: Practical methods and strategies. Michigan: Ann Arbor Press.

    Google Scholar 

  • Nyren, P., Pettersson, B., & Uhlen, M. (1993). Solid phase DNA minisequencing by an enzymatic luminometric inorganic pyrophosphate detection assay. Analytical Biochemistry, 208, 171–175.

    CAS  Google Scholar 

  • Odokuma, L. O., & Dickson, A. A. (2003). Bioremediation of a crude oil polluted tropical mangrove environment. Journal of Applied Sciences and Environmental Management, 7, 23–29.

    CAS  Google Scholar 

  • Olguín, E. J., Hernandez, M. E., & Sánchez-Galván, G. (2007). Hydrocarbon mangroves pollution and bioremediation, phytoremediation and restoration strategies. Revista Internacional de Contaminación Ambiental, 23, 139–154.

    Google Scholar 

  • Oliveira, C. R., Vecchia, I. D., & Madureira, L. A. S. (2007). Avaliação da biodegradação de pireno pela microbiota nativa de manguezais da Ilha de Santa Catarina, Brasil. Geochimica Brasiliensis, 21(3), 274–281.

    Google Scholar 

  • Peixoto, R. S., Rosado, A. S., & Taketani, R. G. (2008). Bioprospecção da diversidade microbiana cultivável e não cultivável. In I. S. de Melo & J. L. de Azevedo (Eds.), Microbiologia Ambiental (pp. 83–106). Jaguariúna: Embrapa Meio Ambiente.

    Google Scholar 

  • Peixoto, R. S., Silva, R. F., & Rosado, A. S. (2009). Biorremediação de ambientes contaminados com petróleo e seus derivados. Microbiologia in foco, 8, 17–30.

    Google Scholar 

  • Quan, X., Tang, Q., He, M., Yang, Z., Lin, C., & Guo, W. (2009). Biodegradation of polycyclic aromatic hydrocarbons in sediments from the Daliao River watershed, China. Journal of Environmental Science, 21, 865–871.

    CAS  Google Scholar 

  • Quantin, C., Joner, E. J., Portal, J. M., & Berthelin, J. (2005). PAH dissipation in a contaminated river sediment under oxic and anoxic conditions. Environmental Pollution, 134, 315–322.

    CAS  Google Scholar 

  • Ramsay, M. A., Swannell, R. P. J., Shipton, W. A., Duke, N. C., & Hill, R. T. (2000). Effect of bioremediation community in oiled mangrove sediments. Marine Pollution Bulletin, 41, 413–419.

    CAS  Google Scholar 

  • Rawe, J., Krietemeyer, S., & Meagher-Hartzell, E. (1993). Guide for Conducting Treatability Studies under CERCLA: Biodegradation Remedy Selection—Interim Guidance. Washington: US Environmental Protection Agency.

    Google Scholar 

  • Rebhun, M., De Smedt, F., & Rwetabula, J. (1996). Dissolved humic substances for remediation of sites contaminated by organic pollutants. Binding-desorption model predictions. Water Research, 30, 2027–2038.

    CAS  Google Scholar 

  • Rothberg, J. M., & Leamon, J. H. (2008). The development and impact of 454 sequencing. Nature Biotechnology, 26, 1117–1124.

    CAS  Google Scholar 

  • Sahoo, K. D., & Dhal, N. K. (2009). Potential microbial diversity in mangrove ecosystems: A review. Indian Journal of Marine Sciences, 38, 249–256.

    CAS  Google Scholar 

  • Santos, A. L., Peixoto, R., & Rosado, A. (2009). New approaches to understanding microbial diversity in wastewater, landfills and leachate treatment. Oecologia Brasiliensis, 13(4), 631–648.

    Google Scholar 

  • Saponaro, S., Bonomo, L., Petruzzelli, G., Romele, L., & Barbafieri, M. (2002). Polycyclic aromatic hydrocarbons (PAHs) slurry phase bioremediation of a manufacturing gas plant (MGP) site aged soil. Water, Air, and Soil Pollution, 135, 219–236.

    CAS  Google Scholar 

  • Sarubbo, A. L., Luna, J. M., & de Campos-Takaki, G. M. (2006). Production and stability studies of the bioemulsifier obtained from a new strain of Candida glabrata UCP 1002. Electronic Journal of Biotechnology, 9, 400–406.

    Google Scholar 

  • Seabra, N. C. S., Bomtempo, J. V., & Costa, N. O. (1999). Biotechnology in the oil industry: 1988–1997. Technical Bulletin, PETROBRAS, 42, 18–25.

    CAS  Google Scholar 

  • Sengupta, A., & Chaudhuri, S. (2002). Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza, 12, 169–174.

    Google Scholar 

  • Shendure, J., Porreca, G. J., & Reppas, N. B. (2005). Accurate multiplex polony sequencing of an evolved bacterial genome. Science, 309, 1728–1732.

    CAS  Google Scholar 

  • Shiaris, M. P. (1989). Seasonal biotransformation of naphthalene, phenanthrene, and benzo[a]pyrene in surficial estuarine sediments. Applied and Environment Microbiology, 55, 1391–1399.

    CAS  Google Scholar 

  • Soares, M. L. G., Chaves, F. O., Corrêa, F. M., & Silva, C. M. G., Jr. (2003). Diversidade estrutural de bosques de mangue e sua relação com distúrbios de origem antrópica: O caso da Baía de Guanabara (Rio de Janeiro). Anuário do Instituto de Geociências – UFRJ, 26, 101–116. 25.

    Google Scholar 

  • Soares, M. L. G., Silva, C. M. G., Jr., Cavalcanti, V. F., Almeida, P. M. M., Monteiro, A. S., Chaves, F. O., et al. (2006). Regeneração de floresta de mangue atingida por óleo na baía de Guanabara (Rio de Janeiro, Brasil): Resultados de 5 anos de monitoramento. Geochimica Brasiliensis, 20(1), 54–77.

    Google Scholar 

  • Stringfellow, W. T., & Aitken, M. D. (1995). Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading pseudomonads. Applied and Environmental Microbiology, 61, 357–362.

    CAS  Google Scholar 

  • Taketani, R. G., dos Santos, H. F., Van Elsas, J. D., & Rosado, A. S. (2009). Characterisation of the effect of a simulated hydrocarbon spill on diazotrophs in mangrove sediment mesocosm. Antonie van Leeuwenhoek, 96, 343–354.

    Google Scholar 

  • Taketani, R. G., Yoshiura, C. A., Dias, A. C. F., Andreote, F. D., & Tsai, S. M. (2010). Diversity and identification of methanogenic archaeaand sulphate-reducing bacteria in sediments from a pristine tropical mangrove. Antonie van Leeuwenhoek, 97, 401–411.

    CAS  Google Scholar 

  • Tam, N. F., Guo, C. L., Yau, W. Y., & Wong, Y. S. (2002). Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hong Kong. Marine Pollution Bulletin, 45, 316–324.

    CAS  Google Scholar 

  • Tam, N. F. Y., Ke, L., Wang, X. H., & Wong, Y. S. (2001). Contamination of polycyclic aromatic hydrocarbons in surface sediments of mangrove swamps. Environmental Pollution, 114, 255–263.

    CAS  Google Scholar 

  • Tam, N. F., & Wong, Y. S. (2008). Effectiveness of bacterial inoculum and mangrove plants on remediation of sediment contaminated with polycyclic aromatic hydrocarbons. Marine Pollution Bulletin, 57, 716–726.

    CAS  Google Scholar 

  • Tam, N. F., Wong, T. W., & Wong, Y. S. (2005). A case study on fuel oil contamination in a mangrove swamp in Hong Kong. Marine Pollution Bulletin, 51, 1092–1100.

    CAS  Google Scholar 

  • Teal, J. M., Farrington, J. W., Burns, K. A., Stegeman, J. J., Tripp, B. W., & Phinney, C. (1992). The West Falmouth Oil Spill after 20 years: Fate of fuel oil compounds and effects on animals. Marine Pollution Bulletin, 24, 607–614.

    CAS  Google Scholar 

  • Thibault, S. L., Anderson, M., & Frankenberger, W. T., Jr. (1996). Influence of surfactants on pyrene desorption and degradation in soils. Applied and Environment Microbiology, 62, 283–287.

    CAS  Google Scholar 

  • Tian, Y., Liu, H. J., Zheng, T. L., Kwon, K. K., Kim, S. J., & Yan, C. L. (2008a). PAHs contamination and bacterial communities in mangrove surface sediments of the Jiulong River Estuary, China. Marine Pollution Bulletin, 57, 707–715.

    CAS  Google Scholar 

  • Tian, Y., Luo, Y. R., Zheng, T. L., Cai, L. Z., Cao, X. X., & Yan, C. L. (2008b). Contamination and potential biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments of Xiamen, China. Marine Pollution Bulletin, 56, 1184–1191.

    CAS  Google Scholar 

  • Trevors, J. T., Kuikman, P., & Vanelsas, J. D. (1994). Release of bacteria into soil: Cell numbers and distribution. Journal of Microbiological Methods, 19, 247–259.

    Google Scholar 

  • Tsai, J. C., Kumar, M., & Lin, J. G. (2009). Anaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria and identification of biotransformation pathway. Journal of Hazardous Materials, 164, 847–855.

    CAS  Google Scholar 

  • Vane, C. H. H. I., Kim, A. W., Moss-Hayes, V., Vickers, B. P., & Hong, K. (2009). Organic and metal contamination in surface mangrove sediments of South China. Marine Pollution Bulletin, 58, 134–144.

    CAS  Google Scholar 

  • Vazquez, P., Holguin, G., Puente, M. E., Lopez-Cortes, A., & Bashan, Y. (2000). Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils, 30, 460–468.

    CAS  Google Scholar 

  • Vogel, T. M. (1996). Bioaugmentation as a soil bioremediation approach. Current Opinion in Biotechnology, 7, 311–316.

    CAS  Google Scholar 

  • Wall, P. K., Mack, J. L., Chanderbali, A. S., Barakat, A., Wolcott, E., Liang, H., et al. (2009). Comparison of next generation sequencing technologies for transcriptome characterization. BMC Genomics, 10, 347. doi:10.1186/1471-2164-10-347.

    Google Scholar 

  • Ward, D. M., & Brock, T. D. (1978). Hydrocarbon biodegradation in hypersaline environments. Applied and Environment Microbiology, 35, 353–359.

    CAS  Google Scholar 

  • Wardrop, J. A., Butler, A. J., & Johnson, J. E. (1987). A field study of the toxicity of two oils and a dispersant to the mangrove Avicennia marina. Marine Biology, 96, 151–156.

    CAS  Google Scholar 

  • Warneckea, F., & Hess, M. (2009). A perspective: Metatranscriptomics as a tool for the discovery of novel biocatalysts. Journal of Biotechnology, 142, 91–95.

    Google Scholar 

  • Watanabe, K., & Hamamura, N. (2003). Molecular and physiological approaches to understanding the ecology os pollutant degradation. Current Opinion in Biotechnology, 14(3), 289–295.

    CAS  Google Scholar 

  • Wild, S. R., & Jones, K. C. (1986). Biological and abiotic losses of polynuclear hydrocarbons from soils freshly amended with sewage sludge. Environmental Toxicology and Chemistry, 12, 5–12.

    Google Scholar 

  • Wu, Y., Tam, N. F., & Wong, M. H. (2008). Effects of salinity on treatment of municipal wastewater by constructed mangrove wetland microcosms. Marine Pollution Bulletin, 57(6–12), 727–34.

    CAS  Google Scholar 

  • Xu, X. R., Li, H. B., & Gu, J. D. (2007). Metabolism and biochemical pathway of n-butyl benzyl phthalate by Pseudomonas fluorescens B-1 isolated from a mangrove sediment. Ecotoxicology and Environmental Safety, 68(3), 379–385.

    CAS  Google Scholar 

  • Yang, S. Z., Jin, H. J., Wei, Z., He, R. X., Ji, Y. J., Li, X. M., et al. (2009). Bioremediation of Oil Spills in Cold Environments: A Review. Pedosphere, 19, 371–381.

    CAS  Google Scholar 

  • Yergeau, E., Arbour, M., Brousseau, R., Juck, D., Lawrence, J. R., Masson, L., et al. (2009). Microarray and Real-Time PCR Analyses of the Responses of High-Arctic Soil Bacteria to Hydrocarbon Pollution and Bioremediation Treatments. Applied and Environmental Microbiology, 75(19), 6258–6267.

    CAS  Google Scholar 

  • Yu, S. H., Ke, L., Wong, Y. S., & Tam, N. F. (2005b). Degradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments. Environment International, 31, 149–154.

    CAS  Google Scholar 

  • Yu, K. S., Wong, A. H., Yau, K. W., Wong, Y. S., & Tam, N. F. (2005a). Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Marine Pollution Bulletin, 51, 1071–1077.

    CAS  Google Scholar 

  • Yuan, S. Y., Chang, J. S., & Chang, B. V. (2001). Biodegradation of phenanthrene in river sediment. Chemosphere, 43, 273–278.

    CAS  Google Scholar 

  • Yuan, S. Y., Wei, S. H., & Chang, B. V. (2000). Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere, 41, 1463–1468.

    CAS  Google Scholar 

  • Yun, T. Y. R. L., Tian-ling, Z., Li-zhe, C., Xiao-xing, C., & Chong-ling, Y. (2008). Contamination and potential biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments of Xiamen, China. Marine Pollution Bulletin, 56, 1184–1191.

    Google Scholar 

  • Zehnder, A. J. B. (1988). Biology of anaerobic microorganisms. New York: Wiley.

    Google Scholar 

  • Zhang, X. X., Cheng, S. P., Zhu, C. J., & Sun, S. L. (2006). Microbial PAHdegradation in soil: Degradation pathways and contributing factors. Pedosphere, 16, 555–565.

    CAS  Google Scholar 

  • Zhang, J., Liu, Y. S., Feng, J. X., Bai, X. L., & Zhang, Z. Z. (2003). Isolation and identification of PAHs-degrading strain ZL5 and its degradative plasmid. Chinese Journal of Applied and Environmental Biology, 9, 433–435.

    CAS  Google Scholar 

  • Zhu, X., Venosa, A. D., Suidan, M. T., & Lee, K. (2001). Guidelines for the bioremediation of marine shorelines and freshwater wetlands. Cincinnati: U.S. Environmental Protection Agency.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the support provided by Petrobras, CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and Faperj (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel S. Peixoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, H.F., Carmo, F.L., Paes, J.E.S. et al. Bioremediation of Mangroves Impacted by Petroleum. Water Air Soil Pollut 216, 329–350 (2011). https://doi.org/10.1007/s11270-010-0536-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0536-4

Keywords

Navigation