Skip to main content

Advertisement

Log in

Elastic Alignment of Triangular Surface Meshes

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

A novel region-based approach is proposed to find a thin plate spline map between a pair of deformable 3D objects represented by triangular surface meshes. The proposed method works without landmark extraction and feature correspondences. The aligning transformation is simply found by solving a system of integral equations. Each equation is generated by integrating a non-linear function over the object domains. We derive recursive formulas for the efficient computation of these integrals for open and closed surface meshes. Based on a series of comparative tests on a large synthetic dataset, our triangular mesh-based algorithm outperforms state of the art methods both in terms of computing time and accuracy. The applicability of the proposed approach has been demonstrated on the registration of 3D lung CT volumes, brain surfaces and 3D human faces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Alliez, P., Saboret, L., & Guennebaud, G. (2000). Surface reconstruction from point sets. In CGAL user and reference manual (4th edn.). CGAL Editorial Board. http://doc.cgal.org/4.4/Manual/packages.html#PkgSurfaceReconstructionFromPointSetsSummary. Accessed 12 Apr 2018.

  • Aubry, M., Schlickewei, U., & Cremers D. (2011). The wave kernel signature: A quantum mechanical approach to shape analysis. In Proceedings of international conference on computer vision (pp. 1626–1633). https://doi.org/10.1109/ICCVW.2011.6130444.

  • Audette, M. A., Ferrie, F. P., & Peters, T. M. (2000). An algorithmic overview of surface registration techniques for medical imaging. Medical Image Analysis, 4(3), 201–217. https://doi.org/10.1016/S1361-8415(00)00014-1.

    Article  Google Scholar 

  • Blais, F., Picard, M., & Godin, G. (2004). Accurate 3D acquisition of freely moving objects. In Proceedings of 2nd international symposium on 3D data processing, visualization and transmission (pp. 422–429). https://doi.org/10.1109/TDPVT.2004.1335269.

  • Bookstein, F. L. (1989). Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machince Intelligence, 11(6), 567–585. https://doi.org/10.1109/34.24792.

    Article  MATH  Google Scholar 

  • Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2006). Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching. Proceedings of the National Academy of Sciences of the United States of America, 103(5), 1168–1172. https://doi.org/10.1073/pnas.0508601103.

    Article  MathSciNet  MATH  Google Scholar 

  • Bronstein, M. M., & Bronstein, A. M. (2011). Shape recognition with spectral distances. IEEE Transactions on Pattern Analysis and Machince Intelligence, 33(5), 1065–1071. https://doi.org/10.1109/TPAMI.2010.210.

    Article  Google Scholar 

  • Bryant, A. S., & Cerfolio, R. J. (2006). The maximum standardized uptake values on integrated FDG-PET/CT is useful in differentiating benign from malignant pulmonary nodules. The Annals of Thoracic Surgery, 82, 1016–1020. https://doi.org/10.1016/j.athoracsur.2006.03.095.

    Article  Google Scholar 

  • Camion, V., & Younes, L. (2001). Geodesic interpolating splines. In M. Figueiredo, J. Zerubia, & A. Jain (Eds.), Energy minimization methods in computer vision and pattern recognition, Lecture notes in computer science (Vol. 2134, pp. 513–527). Berlin: Springer. https://doi.org/10.1007/3-540-44745-8_34.

  • Cheung, W., & Hamarneh, G. (2009). \(n\)-sift: \(n\)-dimensional scale invariant feature transform. IEEE Transactions on Image Processing, 18(9), 2012–2021. https://doi.org/10.1109/TIP.2009.2024578.

    Article  MathSciNet  MATH  Google Scholar 

  • Christensen, G. (1999). Consistent linear-elastic transformations for image matching. In Proceedings of information processing in medical imaging (pp. 224–237). Springer. https://doi.org/10.1007/3-540-48714-X_17.

  • Chui, H., & Rangarajan, A. (2003). A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding, 89(2–3), 114–141. https://doi.org/10.1016/S1077-3142(03)00009-2.

    Article  MATH  Google Scholar 

  • Corneanu, C. A., Simn, M. O., Cohn, J. F., & Guerrero, S. E. (2016). Survey on RGB, 3D, thermal, and multimodal approaches for facial expression recognition: History, trends, and affect-related applications. IEEE Transactions on Pattern Analysis and Machince Intelligence, 38(8), 1548–1568. https://doi.org/10.1109/TPAMI.2016.2515606.

    Article  Google Scholar 

  • Creusot, C., Pears, N., & Austin, J. (2013). A machine-learning approach to keypoint detection and landmarking on 3D meshes. International Journal on Computer Vision, 102(1–3), 146–179. https://doi.org/10.1007/s11263-012-0605-9.

    Article  Google Scholar 

  • Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1, 886–893. https://doi.org/10.1109/CVPR.2005.177.

    Google Scholar 

  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B (Methodological), 39(1), 1–38.

    MathSciNet  MATH  Google Scholar 

  • Domokos, C., Nemeth, J., & Kato, Z. (2012). Nonlinear shape registration without correspondences. IEEE Transactions on Pattern Analysis and Machince Intelligence, 34(5), 943–958. https://doi.org/10.1109/TPAMI.2011.200.

    Article  Google Scholar 

  • Duchenne, O., Bach, F., Kweon, I. S., & Ponce, J. (2011). A tensor-based algorithm for high-order graph matching. IEEE Transactions on Pattern Analysis and Machince Intelligence, 33(12), 2383–2395. https://doi.org/10.1109/TPAMI.2011.110.

    Article  Google Scholar 

  • Forsyth, D., Torr, P., & Zisserman, A. (Eds.) (2008). Feature correspondence via graph matching: Models and global optimization. Lecture notes in computer science (Vol. 5303). Berlin: Springer. https://doi.org/10.1007/978-3-540-88688-4_44.

  • Geman, S., & Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machince Intelligence, 6(6), 721–741. https://doi.org/10.1109/TPAMI.1984.4767596.

    Article  MATH  Google Scholar 

  • Glocker, B., Komodakis, N., Tziritas, G., Navab, N., & Paragios, N. (2008). Dense image registration through MRFs and efficient linear programming. Medical Image Analysis, 12(6), 731–741. https://doi.org/10.1016/j.media.2008.03.006. (Special issue on information processing in medical imaging 2007).

    Article  Google Scholar 

  • Glocker, B., Sotiras, A., Komodakis, N., & Paragios, N. (2011). Deformable medical image registration: Setting the state of the art with discrete methods. Annual Review of Biomedical Engineering, 13(1), 219–244. https://doi.org/10.1146/annurev-bioeng-071910-124649.

    Article  Google Scholar 

  • Guo, H., Rangarajan, A., & Joshi, S. (2006). Diffeomorphic point matching. In N. Paragios, Y. Chen, & O. Faugeras (Eds.), Handbook of mathematical models in computer vision (pp. 205–219). Springer. https://doi.org/10.1007/0-387-28831-7_13

  • Heike, C. L., Cunningham, M. L., Hing, A. V., Stuhaug, E., & Starr, J. R. (2009). Picture perfect?: Reliability of craniofacial anthropometry using three-dimensional digital stereophotogrammetry. Plastic and Reconstructive Surgery, 124(4), 1261–1272. https://doi.org/10.1097/PRS.0b013e3181b454bd.

    Article  Google Scholar 

  • Holden, M. (2008). A review of geometric transformations for nonrigid body registration. IEEE Transactions on Medical Imaging, 27(1), 111–128. https://doi.org/10.1109/TMI.2007.904691.

    Article  Google Scholar 

  • Jian, B., & Vemuri, B. (2011). Robust point set registration using gaussian mixture models. IEEE Transactions on Pattern Analysis and Machince Intelligence, 33(8), 1633–1645. https://doi.org/10.1109/TPAMI.2010.223.

    Article  Google Scholar 

  • Jin, G., Lee, S. J., Hahn, J. K., Bielamowicz, S., Mittal, R., & Walsh, R. (2006). 3D surface reconstruction and registration for image guided medialization laryngoplasty. In Proceedings of the international conference on advances in visual computing (pp. 761–770). Berlin: Springer. https://doi.org/10.1007/11919476_76.

  • Kazhdan, M., Bolitho, M., & Hoppe, H. (2006) Poisson surface reconstruction. In Proceedings of the fourth eurographics symposium on geometry processing, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SGP ’06 (pp. 61–70). https://doi.org/10.2312/SGP/SGP06/061-070.

  • Kim, V. G., Lipman, Y., & Funkhouser, T. (2011). Blended intrinsic maps. ACM Transactions on Graphics, 30(4), 79:1–79:12. https://doi.org/10.1145/2010324.1964974.

    Article  Google Scholar 

  • Koehl, P. (2012). Fast recursive computation of 3D geometric moments from surface meshes. IEEE Transactions on Pattern Analysis and Machince Intelligence, 34(11), 2158–2163. https://doi.org/10.1109/TPAMI.2012.23.

    Article  Google Scholar 

  • Li, S. Z., & Singh, S. (2009). Markov random field modeling in image analysis (Vol. 26). Berlin: Springer. https://doi.org/10.1007/978-1-84800-279-1.

    Google Scholar 

  • Lin, H., Gao, J., Zhou, Y., Lu, G., Ye, M., Zhang, C., et al. (2013). Semantic decomposition and reconstruction of residential scenes from lidar data. ACM Transactions on Graphics, 32(4), 66:1–66:10. https://doi.org/10.1145/2461912.2461969.

    Google Scholar 

  • Lipman, Y., & Daubechies, I. (2011). Conformal wasserstein distances: Comparing surfaces in polynomial time. Advances in Mathematics, 227(3), 1047–1077. https://doi.org/10.1016/j.aim.2011.01.020.

    Article  MathSciNet  MATH  Google Scholar 

  • Lombaert, H., Grady, L., Pennec, X., Ayache, N., & Cheriet, F. (2014). Spectral log-demons: Diffeomorphic image registration with very large deformations. International Journal on Computer Vision, 107(3), 254–271.

    Article  Google Scholar 

  • Lourakis, M. (2004). Levmar: Levenberg–Marquardt nonlinear least squares algorithms in C/C++. http://www.ics.forth.gr/~lourakis/levmar/. Accessed 12 Apr 2018.

  • Ma, J., Zhao, J., Tian, J., Tu, Z., & Yuille, A. (2013). Robust estimation of nonrigid transformation for point set registration. In Proceedings of IEEE conference on computer vision and pattern recognition (pp. 2147–2154). https://doi.org/10.1109/CVPR.2013.279.

  • Mian, A., Bennamoun, M., & Owens, R. (2007). An efficient multimodal 2D–3D hybrid approach to automatic face recognition. IEEE Transactions on Pattern Analysis and Machince Intelligence, 29(11), 1927–1943. https://doi.org/10.1109/TPAMI.2007.1105.

    Article  Google Scholar 

  • Mitra, J., Kato, Z., Marti, R., Oliver, A., Llado, X., Ghose, S., Vilanova, J. C., & Meriaudeau, F. (2011) A non-linear diffeomorphic framework for prostate multimodal registration. In Proceedings of international conference on digital image computing: Techniques and applications (pp. 31–36). Noosa: IEEE.

  • Mitra, J., Kato, Z., Ghose, S., Sidibe, D., Mart, R., Llado, X., Oliver, A., Vilanova, J. C., & Meriaudeau, F. (2012a) Spectral clustering to model deformations for fast multimodal prostate registration. In Proceedings of international conference on pattern recognition. IAPR, IEEE, Tsukuba Science City, Japan (pp. 2622–2625).

  • Mitra, J., Kato, Z., Marti, R., Oliver, A., Llado, X., Sidibe, D., et al. (2012b). A spline-based non-linear diffeomorphism for multimodal prostate registration. Medical Image Analysis, 16(6), 1259–1279. https://doi.org/10.1016/j.media.2012.04.006.

    Article  Google Scholar 

  • Myronenko, A., & Song, X. (2010). Point set registration: Coherent point drift. IEEE Transactions on Pattern Analysis and Machince Intelligence, 32(12), 2262–2275. https://doi.org/10.1109/TPAMI.2010.46.

    Article  Google Scholar 

  • Nair, P., & Cavallaro, A. (2009). 3D face detection, landmark localization, and registration using a point distribution model. IEEE Transactions on Multimedia, 11(4), 611–623. https://doi.org/10.1109/tmm.2009.2017629.

    Article  Google Scholar 

  • Newcombe, R. A., Fox, D., & Seitz, S. M. (2015). Dynamicfusion: Reconstruction and tracking of non-rigid scenes in real-time. In Proceedings of IEEE conference on computer vision and pattern recognition (pp. 343–352). https://doi.org/10.1109/CVPR.2015.7298631.

  • Nooruddin, F. S., & Turk, G. (2003). Simplification and repair of polygonal models using volumetric techniques. IEEE Transactions on Visualization and Computer Graphics, 9(2), 191–205. https://doi.org/10.1109/TVCG.2003.1196006.

    Article  Google Scholar 

  • Papazov, C., & Burschka, D. (2011). Deformable 3D shape registration based on local similarity transforms. Computer Graphics Forum, 30(5), 1493–1502.

    Article  Google Scholar 

  • Pennec, X., Cachier, P., & Ayache, N. (1999). Understanding the ”demons algorithm”: 3D non-rigid registration by gradient descent. In C. Taylor, & A. Colchester (Eds.), Medical image computing and computer-assisted intervention, Lecture notes in computer science (Vol. 1679, pp. 597–605). Berlin: Springer. https://doi.org/10.1007/10704282_64

  • Peyré, G., & Cohen, L. (2009). Geodesic methods for shape and surface processing. In J. M. R. S. Tavares & R. M. N. Jorge (Eds.), Advances in computational vision and medical image processing, computational methods in applied sciences (pp. 29–56). Netherlands: Springer. https://doi.org/10.1007/978-1-4020-9086-8_2.

    Chapter  Google Scholar 

  • Postelnicu, G., Zollei, L., Desikan, R., & Fischl, B. (2007). Geometry driven volumetric registration. In N. Karssemeijer & B. Lelieveldt (Eds.), Information processing in medical imaging, Lecture notes in computer science (pp. 675–686). Berlin: Springer. https://doi.org/10.1007/978-3-540-73273-0_56.

    Chapter  Google Scholar 

  • Pozo, J. M., Villa-Uriol, M. C., & Frangi, A. F. (2011). Efficient 3D geometric and zernike moments computation from unstructured surface meshes. IEEE Transactions on Pattern Analysis and Machince Intelligence, 33(3), 471–484. https://doi.org/10.1109/TPAMI.2010.139.

    Article  Google Scholar 

  • Rineau, L., & Yvinec, M. (2007). A generic software design for delaunay refinement meshing. Computational Geometry, 38(12), 100–110. https://doi.org/10.1016/j.comgeo.2006.11.008.

    Article  MathSciNet  MATH  Google Scholar 

  • Rineau, L., & Yvinec, M. (2012). 3D surface mesh generation. In CGAL user and reference manual (4.0 edn.). CGAL Editorial Board.

  • Sagawa, R., Akasaka, K., Yagi, Y., Hamer, H., & Van Gool, L. (2009). Elastic convolved ICP for the registration of deformable objects. In Proceedings of international conference on computer vision (pp. 1558–1565). Kyoto: IEEE. https://doi.org/10.1109/ICCVW.2009.5457428.

  • Sánta, Z., & Kato, Z. (2012a). A unifying framework for non-linear registration of 3D objects. In Proceedings of IEEE international conference on cognitive infocommunications (pp. 547–552). Kosice: IEEE.

  • Sánta, Z., & Kato, Z. (2012b). Elastic registration of 3D deformable objects. In Proceedings of international conference on digital image computing: Techniques and applications. Fremantle: IEEE.

  • Sánta, Z., & Kato, Z. (2013). Correspondence-less non-rigid registration of triangular surface meshes. In Proceedings of IEEE conference on computer vision and pattern recognition. Portland: IEEE.

  • Sánta, Z., & Kato, Z. (2016). 3D face alignment without correspondences. In Proceedings of European conference on computer vision workshops (pp. 521–535). https://doi.org/10.1007/978-3-319-48881-3_36.

  • Savran, A., Alyüz, N., Dibekliolu, H., Celiktutan, O., Gökberk, B., Sankur, B., & Akarun, L. (2008). Bosphorus database for 3D face analysis. In Biometrics and identity management (pp. 47–56). Springer. https://doi.org/10.1007/978-3-540-89991-4_6.

  • Scott, D. W. (2009). The l2E method. Wiley Interdisciplinary Reviews: Computational Statistics, 1(1), 45–51. https://doi.org/10.1002/wics.4.

    Article  Google Scholar 

  • Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. In Proceedings of IEEE conference on computer vision and pattern recognition (pp. 519–528). IEEE Computer Society. https://doi.org/10.1109/CVPR.2006.19.

  • Sharifi, A., Jones, R., Ayoub, A., Moos, K., Walker, F., Khambay, B., et al. (2008). How accurate is model planning for orthognathic surgery? International Journal of Oral and Maxillofacial Surgery, 37(12), 1089–1093. https://doi.org/10.1016/j.ijom.2008.06.011.

    Article  Google Scholar 

  • Shewchuk, J. R. (2002). Delaunay refinement algorithms for triangular mesh generation. Computational Geometry. 16th ACM Symposium on Computational Geometry, 22(13), 21–74. https://doi.org/10.1016/S0925-7721(01)00047-5.

    MathSciNet  MATH  Google Scholar 

  • Song, S., Lichtenberg, S. P., & Xiao, J. (2015) Sun RGB-D: A RGB-D scene understanding benchmark suite. In Proceedings of IEEE conference on computer vision and pattern recognition (pp. 567–576). https://doi.org/10.1109/CVPR.2015.7298655.

  • Sotiras, A., Davatzikos, C., & Paragios, N. (2013). Deformable medical image registration: A survey. IEEE Transactions on Medical Imaging, 32(7), 1153–1190. https://doi.org/10.1109/TMI.2013.2265603.

    Article  Google Scholar 

  • Sukno, F. M., Waddington, J. L., & Whelan, P. F. (2015). 3-D facial landmark localization with asymmetry patterns and shape regression from incomplete local features. IEEE Transactions on Cybernetics, 45(9), 1717–1730. https://doi.org/10.1109/TCYB.2014.2359056.

    Article  Google Scholar 

  • Sun, J., Ovsjanikov, M., & Guibas, L. (2009). A concise and provably informative multi-scale signature based on heat diffusion. Computer Graphics Forum, 28(5), 1383–1392. https://doi.org/10.1111/j.1467-8659.2009.01515.x.

    Article  Google Scholar 

  • Tam, G. K. L., Cheng, Z. Q., Lai, Y. K., Langbein, F. C., Liu, Y., Marshall, D., et al. (2013). Registration of 3D point clouds and meshes: A survey from rigid to nonrigid. IEEE Transactions on Visualization and Computer Graphics, 19(7), 1199–1217. https://doi.org/10.1109/TVCG.2012.310.

    Article  Google Scholar 

  • Tamas, L., Frohlich, R., & Kato, Z. (2014). Relative pose estimation and fusion of omnidirectional and lidar cameras. In Proceedings of the ECCV workshop on computer vision for road scene understanding and autonomous driving. Lecture notes in computer science. Berlin: Springer.

  • Tanács, A., Lindblad, J., Sladoje, N., & Kato, Z. (2015). Estimation of linear deformations of 2D and 3D fuzzy objects. Pattern Recognition, 48(4), 1391–1403. https://doi.org/10.1016/j.patcog.2014.10.006.

    Article  MATH  Google Scholar 

  • Thirion, J. P. (1998). Image matching as a diffusion process: An analogy with maxwell’s demons. Medical Image Analysis, 2(3), 243–260. https://doi.org/10.1016/S1361-8415(98)80022-4.

    Article  Google Scholar 

  • Vercauteren, T., Pennec, C., Perchant, A., & Ayache, N. (2007). Non-parametric diffeomorphic image registration with the demons algorithm. In N. Ayache, S. Ourselin, & A. Maeder (Eds.), Medical image computing and computer-assisted intervention. Lecture notes in computer science (pp. 319–326). Berlin: Springer. https://doi.org/10.1007/978-3-540-75759-7_39.

    Google Scholar 

  • Wahba, G. (1990). Spline models for observational data. Society for Industrial and Applied Mathematics,. https://doi.org/10.1137/1.9781611970128.

    MATH  Google Scholar 

  • Weise, T., Leibe, B., Van Gool, L. (2007). Fast 3D scanning with automatic motion compensation. In Proceedings of IEEE conference on computer vision and pattern recognition (pp. 1–8). https://doi.org/10.1109/CVPR.2007.383291.

  • Xu, W., Salzmann, M., Wang, Y., & Liu, Y. (2015). Deformable 3D fusion: From partial dynamic 3D observations to complete 4D models. In Proceedings of international conference on computer vision (pp. 2183–2191). https://doi.org/10.1109/ICCV.2015.252.

  • Yamazaki, S., Kagami, S., & Mochimaru, M. (2013). Non-rigid shape registration using similarity-invariant differential coordinates. In Proceedings of international conference on 3D vision (pp. 191–198) https://doi.org/10.1109/3DV.2013.33.

  • Zagorchev, L., & Goshtasby, A. (2006). A comparative study of transformation functions for nonrigid image registration. IEEE Transactions on Image Processing, 15(3), 529–538. https://doi.org/10.1109/TIP.2005.863114.

    Article  Google Scholar 

  • Zaharescu, A., Boyer, E., Varanasi, K., & Horaud, R. (2009). Surface feature detection and description with applications to mesh matching. In Proceedings of IEEE conference on computer vision and pattern recognition (pp. 373–380). https://doi.org/10.1109/CVPR.2009.5206748.

  • Zeng, Y., Wang, C., Gu, X., Samaras, D., & Paragios, N. (2013). A generic deformation model for dense non-rigid surface registration: A higher-order mrf-based approach. In Proceedings of international conference on computer vision (pp. 3360–3367). https://doi.org/10.1109/ICCV.2013.417.

  • Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., & Paragios, N. (2010). Dense non-rigid surface registration using high-order graph matching. In Proceedings of IEEE conference on computer vision and pattern recognition (pp. 382–389). https://doi.org/10.1109/CVPR.2010.5540189.

  • Zimmermann, H. J. (2001). Fuzzy set theory and its applications. Berlin: Springer.

    Book  Google Scholar 

  • Zitová, B., & Flusser, J. (2003). Image registration methods: A survey. Image and Vision Computing, 21(11), 977–1000. https://doi.org/10.1016/S0262-8856(03)00137-9.

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the NKFI-6 fund through Project K120366; the Research and Development Operational Programme for the project "Modernization and Improvement of Technical Infrastructure for Research and Development of J. Selye University in the Fields of Nanotechnology and Intelligent Space", ITMS 26210120042, co-funded by the European Regional Development Fund; the Agence Universitaire de la Francophonie (AUF) and the Romanian Institute for Atomic Physics (IFA), through the AUF-RO project NETASSIST. Lung images provided by Mediso Ltd., Budapest, Hungary. The MR brain data sets and their manual segmentations were provided by the Center for Morphometric Analysis at Massachusetts General Hospital and the face scans have been obtained from the Bosphorus Dataset (Savran et al. 2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltan Kato.

Additional information

Communicated by Sven J. Dickinson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánta, Z., Kato, Z. Elastic Alignment of Triangular Surface Meshes. Int J Comput Vis 126, 1220–1244 (2018). https://doi.org/10.1007/s11263-018-1084-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-018-1084-4

Keywords

Navigation