Skip to main content
Log in

Scale-Free Registrations in 3D: 7 Degrees of Freedom with Fourier Mellin SOFT Transforms

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Fourier Mellin SOFT (FMS) as a novel method for global registration of 3D data is presented. It determines the seven degrees of freedom (7-DoF) transformation, i.e., the 6-DoF rigid motion parameters plus 1-DoF scale, between two scans, i.e., two noisy, only partially overlapping views on objects or scenes. It is based on a sequence of the 3D Fourier transform, the Mellin transform and the SO(3) Fourier transform. This combination represents a non-trivial complete 3D extension of the well known Fourier-Mellin registration for 2D images. It is accordingly based on decoupling rotation and scale from translation. First, rotation—which is the main challenge for the extension to 3D data - is tackled with a SO(3) Fourier Transform (SOFT) based on Spherical Harmonics. In a second step, scale is determined via a 3D Mellin transform. Finally, translation is calculated by Phase-Matching. Experiments are presented with simulated data sets for ground truth comparisons and with real world data including object recognition and localization in Magnetic Resonance Tomography (MRT) data, registration of 2.5D RGBD scans from a Microsoft Kinect with a scale-free 3D model generated by Multi-View Vision, and 3D mapping by registration of a sequence of consecutive scans from a low-cost actuated Laser Range Finder. The results show that the method is fast and that it can robustly handle partial overlap, interfering structures, and noise. It is also shown that the method is a very interesting option for 6-DoF registration, i.e., when scale is known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Bariya, P., Novatnack, J., Schwartz, G., & Nishino, K. (2012). 3d geometric scale variability in range images: Features and descriptors. International Journal of Computer Vision, 99(2), 232–255.

    Article  MathSciNet  Google Scholar 

  • Bay, H., Tuytelaars, T., & Van Gool, L. (2006). In SURF: Speeded up robust features. Volume 3951 of Lecture Notes in Computer Science. Springer Berlin/Heidelberg, pp. 404–417.

  • Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up robust features (surf). Computer Vision and Image Understanding, 110(3), 346–359.

    Article  Google Scholar 

  • Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256.

    Article  Google Scholar 

  • Buelow, H., & Birk, A. (2013). Spectral 6dof registration of noisy 3d range data with partial overlap. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 954–969.

    Article  Google Scholar 

  • Casasent, D., & Psaltis, D. (1977). New optical transforms for pattern recognition. Proceedings of the IEEE, 65, 77–84.

    Article  Google Scholar 

  • Censi, A., & Carpin, S. (2009). HSM3D: Feature-less global 6dof scan-matching in the hough/radon domain. In Proceedings of the 2009 IEEE international conference on robotics and automation (ICRA).

  • Censi, A., Iocchi, L., & Grisetti, G. (2005). Scan matching in the hough domain. In Proceedings of IEEE international conference on robotics and automation, 2005. ICRA’05, pp. 2739–2744.

  • Chen, Q. S., Defrise, M., & Deconinck, F. (1994). Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(12), 1156–1168.

    Article  Google Scholar 

  • Chen, Q., Defrise, M., & Deconinck, F. (1994). Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16, 1156–1168.

    Article  Google Scholar 

  • Chen, Y., & Medioni, G. (1992). Object modeling by registration of multiple range images. Image and Vision Computing, 10(3), 145–155.

    Article  Google Scholar 

  • Chua, C. S., & Jarvis, R. (1997). Point signatures: A new representation for 3d object recognition. International Journal of Computer Vision, 25(1), 63–85.

    Article  Google Scholar 

  • Cideciyan, A. V. (1995). Registration of ocular fundus images. IEEE Magazine EMB, 14, 52–58.

    Google Scholar 

  • Driscoll, J., & Healy, D. (1994). Computing Fourier transforms and convolutions on the 2-sphere. Advances in Applied Mathematics, 15, 202–250.

    Article  MathSciNet  MATH  Google Scholar 

  • Fiolka, T., Stückler, J., Klein, D. A., Schulz, D., & Behnke, S. (2012). Sure: Surface entropy for distinctive 3d features. In Spatial cognition VIII. Springer, pp. 74–93.

  • Fischer, D., & Kohlhepp, P. (2000). 3D geometry reconstruction from multiple segmented surface descriptions using neuro-fuzzy similarity measures. Journal of Intelligent and Robotic Systems, 29, 389–431.

    Article  MATH  Google Scholar 

  • Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Graphics and Image Processing, 24(6), 381–395.

    MathSciNet  Google Scholar 

  • Foroosh, H., Zerubia, J., & Berthod, M. (2002). Extension of phase correlation to subpixel registration. IEEE Transactions on Image Processing, 11(3), 188–200.

    Article  Google Scholar 

  • Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., et al. (2003). A search engine for 3d models. ACM Transactions on Graphics, 22(1), 82–105.

    Article  Google Scholar 

  • Goodman, J. W. (1996). Introduction To Fourier optics. Englewood: Roberts.

    Google Scholar 

  • Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., & Kwok, N. M. (2016). A comprehensive performance evaluation of 3d local feature descriptors. International Journal of Computer Vision, 116(1), 66–89.

    Article  MathSciNet  Google Scholar 

  • Guo, Y., Sohel, F., Bennamoun, M., Lu, M., & Wan, J. (2013). Rotational projection statistics for 3d local surface description and object recognition. International Journal of Computer Vision, 105(1), 63–86.

    Article  MathSciNet  MATH  Google Scholar 

  • He, W., Ma, W., & Zha, H. (2005). Automatic registration of range images based on correspondence of complete plane patches. In Fifth international conference on 3-D digital imaging and modeling (3DIM’05). IEEE, pp. 470–475.

  • Healy, D., Rockmore, D., Kostelec, P., & Moore, S. (1996). FFTs for the 2-sphere-improvements and variations. The Journal of Fourier Analysis and Applications, 9, 341–385.

    Article  MathSciNet  MATH  Google Scholar 

  • Horn, B. K. P. (1987). Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America, 4(4), 629–642.

    Article  Google Scholar 

  • Horner, J. L., & Gianino, P. D. (1984). Phase-only matched filtering. Applied Optics, 23, 812–816.

    Article  Google Scholar 

  • Kazhdan, M., Funkhouser, T., & Rusinkiewicz (2003). Rotation invariant spherical harmonic representation of 3d shape descriptors. In Eurographics symposium in geometry processing.

  • Keller, Y., Shkolnisky, Y., & Averbuch, A. (2005). Algebraically accurate volume registration using Euler’s theorem and the 3d pseudo-polar FFT. In: Proceedings of IEEE conference on computer vision and pattern recognition.

  • Keller, Y., Shkolnisky, Y., & Averbuch, A. (2006). Volume registration using the 3-d pseudopolar Fourier transform. IEEE Transactions on Signal Processing, 54(11), 4323–4331.

    Article  MATH  Google Scholar 

  • Kostelec, P., & Rockmore, D. (2003). FFTs on the rotation group. Working papers series, Santa Fe Institute.

  • Kostelec, P., & Rockmore, D. (2008). FFTs on the rotation group. Journal of Fourier Analysis and applications, 14, 145–179.

    Article  MathSciNet  MATH  Google Scholar 

  • Lindeberg, T. (1993). Detecting salient blob-like image structures and their scales with a scale-space primal sketch: A method for focus-of-attention. International Journal of Computer Vision, 11(3), 283–318.

    Article  Google Scholar 

  • Lowe, D. G. (1999). Object recognition from local scale-invariant features. In The proceedings of the seventh IEEE international conference on computer vision, 1999, Vol. 2, pp. 1150–1157.

  • Lowe, D. (2001). Local feature view clustering for 3d object recognition. In Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition, 2001. CVPR 2001. Vol. 1, pp. I-682–I-688, TY-CONF.

  • Lucchese, L., Doretto, G., & Cortelazzo, G. (2002). A frequency domain technique for range data registration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 1468–1484.

    Article  Google Scholar 

  • Makadia, A., Patterson, A., & Daniilidis, K. (2006). Fully automatic registration of 3D point clouds. In IEEE computer society conference on computer vision and pattern recognition (CVPR), Vol. 1, pp. 1297–1304.

  • Mian, A. S., Bennamoun, M., & Owens, R. A. (2006). A novel representation and feature matching algorithm for automatic pairwise registration of range images. International Journal of Computer Vision, 66(1), 19–40.

    Article  Google Scholar 

  • Oppenheim, A., & Lim, J. (1981). The importance of phase in signals. Proceedings of the IEEE, 69, 529–541.

    Article  Google Scholar 

  • Oppenheim, A. V., & Schafer, R. W. (1989). Discrete-time signal processing. Englewood Cliffs: Prentice Hall Signal Processing Series.

    MATH  Google Scholar 

  • Ozden, K., Cornelis, K., Van Eycken, L., & Van Gool, L. (2004). Reconstructing 3d trajectories of independently moving objects using generic constraints. Computer Vision and Image Understanding, 96(3), 453–471.

    Article  Google Scholar 

  • Pan, W., Kaihuai, Q., & Chen, Y. (2009). An adaptable-multilayer fractional Fourier transform approach for image registration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 400–413.

    Article  Google Scholar 

  • Pathak, K., Birk, A., Vaskevicius, N., Pfingsthorn, M., Schwertfeger, S., & Poppinga, J. (2010a). Online 3d slam by registration of large planar surface segments and closed form pose-graph relaxation. Journal of Field Robotics Special Issue on 3D Mapping, 27(1), 52–84.

    Article  Google Scholar 

  • Pathak, K., Birk, A., Vaskevicius, N., & Poppinga, J. (2010b). Fast registration based on noisy planes with unknown correspondences for 3d mapping. IEEE Transactions on Robotics, 26(3), 424–441.

    Article  Google Scholar 

  • Pfingsthorn, M., Birk, A., & Bülow, H. (2012). Uncertainty estimation for a 6-dof spectral registration method as basis for sonar-based underwater 3d slam. In: International conference on robotics and automation (ICRA). IEEE Press.

  • Pomerleau, F., Colas, F., Siegwart, R., & Magnenat, S. (2013). Comparing icp variants on real-world data sets. Autonomous Robots, 34, 133–148.

    Article  Google Scholar 

  • Pottmann, H., Huang, Q. X., Yang, Y. L., & Hu, S. M. (2006). Geometry and convergence analysis of algorithms for registration of 3d shapes. International Journal of Computer Vision, 67(3), 277–296.

    Article  Google Scholar 

  • Reddy, B., & Chatterji, B. (1996). An fft-based technique for translation, rotation, and scale-invariant image registration. IEEE Transactions on Image Processing, 5(8), 1266–1271.

    Article  Google Scholar 

  • Rodol, E., Albarelli, A., Bergamasco, F., & Torsello, A. (2013). A scale independent selection process for 3d object recognition in cluttered scenes. International Journal of Computer Vision, 102(1), 129–145.

    Article  MathSciNet  Google Scholar 

  • Rosten, E., & Drummond, T. (2006). Machine learning for high-speed corner detection (pp. 430–443). Berlin, Heidelberg: Springer Berlin Heidelberg.

    Google Scholar 

  • Rothganger, F., Lazebnik, S., Schmid, C., & Ponce, J. (2006). 3d object modeling and recognition using local affine-invariant image descriptors and multi-view spatial constraints. International Journal of Computer Vision, 66(3), 231–259.

    Article  Google Scholar 

  • Rusinkiewicz, S., & Levoy, M. (2001). Efficient variants of the icp algorithm. In Proceedings of third international conference on 3-D digital imaging and modeling, pp. 145–152.

  • Rusu, R. B., & Cousins, S. (2011). 3d is here: Point cloud library (pcl). In 2011 IEEE international conference on robotics and automation (ICRA), pp. 1–4.

  • Rusu, R. B., Blodow, N., & Beetz, M. (2009). Fast point feature histograms (fpfh) for 3d registration. In IEEE international conference on robotics and automation, 2009. ICRA’09. IEEE, pp. 3212–3217.

  • Salti, S., Tombari, F., & Di Stefano, L. (2014). Shot: Unique signatures of histograms for surface and texture description. Computer Vision and Image Understanding, 125, 251–264.

    Article  Google Scholar 

  • Smith, S. M., & Brady, J. M. (1997). Susan—A new approach to low level image processing. International Journal of Computer Vision, 23(1), 45–78.

    Article  Google Scholar 

  • Steder, B., Rusu, R. B., Konolige, K., & Burgard, W. (2011). Point feature extraction on 3d range scans taking into account object boundaries. In 2011 IEEE international conference on robotics and automation (icra). IEEE, pp. 2601–2608.

  • Stein, F., & Medioni, G. (1992). Structural indexing: Efficient 3-d object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 125–145.

    Article  Google Scholar 

  • Stone, S., Tao, B., & McGuire, M. (2003). Analysis of image registration noise due to rotationally dependent aliasing. Journal of Visual Communication and Image Representation, 14, 114–135.

    Article  Google Scholar 

  • Thirion, J. P. (1996). New feature points based on geometric invariants for 3d image registration. International Journal of Computer Vision, 18(2), 121–137.

    Article  Google Scholar 

  • Tombari, F., Salti, S., & Di Stefano, L. (2010). Unique signatures of histograms for local surface description. In Computer vision–ECCV 2010. Springer, pp. 356–369.

  • Tombari, F., Salti, S., & Di Stefano, L. (2011). A combined texture-shape descriptor for enhanced 3d feature matching. In 2011 18th IEEE international conference on image processing (ICIP). IEEE, pp. 809–812.

  • Tombari, F., Salti, S., & DiStefano, L. (2013). Performance evaluation of 3d keypoint detectors. International Journal of Computer Vision, 102(1), 198–220.

    Article  Google Scholar 

  • Tzimiropoulos, G., Argyriou, V., Zafeiriou, S., & Stathaki, T. (2010). Robust FFT-based scale-invariant image registration with image gradients. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 1899–1906.

    Article  Google Scholar 

  • Vander Lugt, A. (1964). Signal detection by complex spatial filtering. IEEE Transactions on Information Theory, 10, 139–145.

    Article  MATH  Google Scholar 

  • Vaskevicius, N., Birk, A., Pathak, K., Schwertfeger, S., & Rathnam, R. (2010). Efficient representation in 3d environment modeling for planetary robotic exploration. Advanced Robotics, 24(8–9), 1169–1197.

    Article  Google Scholar 

  • Weng, J. (1993). Image matching using the windowed fourier phase. International Journal of Computer Vision, 11, 211–236.

    Article  Google Scholar 

  • Zuiderveld, K. (1994). Graphic gems IV. San Diego: Academic Press Professional.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Birk.

Additional information

Communicated by B. C. Vemuri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bülow, H., Birk, A. Scale-Free Registrations in 3D: 7 Degrees of Freedom with Fourier Mellin SOFT Transforms. Int J Comput Vis 126, 731–750 (2018). https://doi.org/10.1007/s11263-018-1067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-018-1067-5

Keywords

Navigation