Skip to main content
Log in

Image Comparison by Compound Disjoint Information with Applications to Perceptual Visual Quality Assessment, Image Registration and Tracking

International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

In this paper, we study (normalized) disjoint information as a metric for image comparison and its applications to perceptual image quality assessment, image registration, and video tracking. Disjoint information is the joint entropy of random variables excluding the mutual information. This measure of statistical dependence and information redundancy satisfies more rigorous metric conditions than mutual information, including self-similarity, minimality, symmetry and triangle inequality. It is applicable to two or more random variables, and can be computed by vector histogramming, vector Parzen window density approximation, and upper bound approximation involving fewer variables. We show such a theoretic advantage does have implications in practice. In the domain of digital image and video, multiple visual features are extracted and (normalized) compound disjoint information is derived from a set of marginal densities of the image distributions, thus enriching the vocabulary of content representation. The proposed metric matching functions are applied to several domain applications to demonstrate their efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aczel, J., & Daroczy, Z. (1975). Measures of information and their characterizations. New York: Academic Press.

    MATH  Google Scholar 

  • Bennett, C. H., Gacs, P., Li, M., Vitanyi, P. M. B., & Zurek, W. H. (1998). Information distance. IEEE Transactions on Information Theory, 44(4), 1407–1423.

    Article  MATH  MathSciNet  Google Scholar 

  • Bohm, C., Berchtold, S., & Keim, D. A. (2001). Searching in high-dimensional spaces: index structures for improving the performance of multimedia databases. ACM Computing Surveys, 33(3), 322–373.

    Article  Google Scholar 

  • Cover, T., & Thomas, J. (1991). Elements of information theory. New York: Wiley.

    Book  MATH  Google Scholar 

  • Daly, S. (1993). The visible differences predictor: an algorithm for the assessment of image fidelity. In Watson, A. (Ed.), Digital images and human vision (pp. 179–206). Cambridge: MIT Press.

    Google Scholar 

  • Fano, R. M. (1961). Transmission of information: a statistical theory of communication. Cambridge: MIT Press.

    Google Scholar 

  • Han, T. S. (1980). Multiple mutual informations and multiple interactions in frequency data. Information and Control, 46(1), 26–45.

    Article  MATH  MathSciNet  Google Scholar 

  • Haralick, R. M. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5), 786–804.

    Article  Google Scholar 

  • Horn, B. K. P., & Schunk, B. G. (1981). Determining optical flow. Artificial Intelligence, 17, 185–203.

    Article  Google Scholar 

  • Huang, J., Kumar, S. R., Mitra, M., Zhu, W. J., & Zabih, R. (1999). Spatial color indexing and applications. International Journal of Computer Vision, 35(3), 245–268.

    Article  Google Scholar 

  • Huttenlocher, D. P., Klanderman, G. A., & Rucklidge, W. J. (1993). Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9), 850–863.

    Article  Google Scholar 

  • Ibanez, L., Schroeder, W., Ng, L., & Cates, J. (2004). The ITK software guide: the insight segmentation and registration toolkit. Kitware.

  • Kelly, D. H. (1979). Motion and vision. II. Stabilized spatio-temporal threshold surface. Journal of Optical Society of America, 69, 1340–1349.

    Article  Google Scholar 

  • Kunt, M., & van den Branden Lambrecht, C. (1998). Special issue on image and video quality metrics. Signal Processing 70(3).

  • Li, M., Chen, X., Li, X., Ma, B., & Vitanyi, P. M. (2004). The similarity metric. IEEE Transactions on Information Theory, 50(12), 3250–3264.

    Article  MathSciNet  Google Scholar 

  • Li, K., Chen, M., & Kanade, T. (2007). Cell population tracking and lineage construction with spatiotemporal context. In International conference on medical image computing and computer assisted intervention (MICCAI).

  • Linde, Y., Buzo, A., & Gray, R. (1980). An algorithm for vector quantizer design. IEEE Transactions on Communications, 28(1), 84–95.

    Article  Google Scholar 

  • Lowe, D. G. (1995). Similarity metric learning for a variable-kernel classifier. Neural Computation, 7(1), 72–85.

    Article  Google Scholar 

  • Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., & Seutens, P. (1997). Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging, 16(2), 187–198.

    Article  Google Scholar 

  • Mallat, S. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674–693.

    Article  MATH  Google Scholar 

  • Mannos, J. L., & Sakrison, D. J. (1974). The effects of a visual fidelity criterion on the encoding of images. IEEE Transactions on Information Theory, 20, 525–536.

    Article  MATH  Google Scholar 

  • Mattes, D., Haynor, D., Vesselle, H., Lewellen, T., & Eubank, W. (2003). PET-CT image registration in the chest using free-form deformations. IEEE Transactions on Medical Imaging, 22(1), 120–128.

    Article  Google Scholar 

  • McGill, W. J. (1954). Multivariate information transmission. Psychometrika, 19, 97–116.

    Article  MATH  Google Scholar 

  • McInerney, T., & Terzopoulos, D. (1996). Deformable models in medical image analysis: a survey. Medical Image Analysis, 1(2), 91–108.

    Article  Google Scholar 

  • Mundy, J. L., & Chang, C. F. (2004). Fusion of intensity, texture, and color in video tracking based on mutual information. In Proceedings of the 33rd applied imagery pattern recognition workshop (AIPR’04) (pp. 10–15). Washington: IEEE Computer Society.

    Chapter  Google Scholar 

  • Pluim, J. P. W., Maintz, J. B. A., & Viergever, M. A. (2003). Mutual-information-based registration of medical images: a review. IEEE Transactions on Medical Imaging, 22(8), 986–1004.

    Article  Google Scholar 

  • Rajski, C. (1961). A metric space of discrete probability distributions. Information and Control, 4(4), 371–377.

    Article  MathSciNet  Google Scholar 

  • Rohaly, A. et al. (2000). Video quality experts group: current results and future directions. In SPIE visual communications and image processing (vol. 4067, pp. 742–753).

  • Rubner, Y., Puzicha, J., Tomasi, C., & Buhmann, J. M. (2001). Empirical evaluation of dissimilarity measures for color and texture. Computer Vision and Image Understanding, 84(1), 25–43.

    Article  MATH  Google Scholar 

  • Santini, S., & Jain, R. (1999). Similarity matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(9), 871–883.

    Article  Google Scholar 

  • Schiele, B., & Crowley, J. (2000). Recognition without correspondence using multidimensional receptive field histograms. International Journal of Computer Vision, 36(1), 31–50.

    Article  Google Scholar 

  • Schwartzkopf, W., Bovik, A., & Evans, B. (2005). Maximum-likelihood techniques for joint segmentation-classification of multispectral chromosome images. IEEE Transactions on Medical Imaging, 24(12), 1593–1610.

    Article  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423, 623–656.

    MATH  MathSciNet  Google Scholar 

  • Sheikh, H., Sabir, M., & Bovik, A. (2006a). A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Transactions on Image Processing, 15(11), 3440–3451.

    Article  Google Scholar 

  • Sheikh, H. R., Wang, Z., Cormack, L., & Bovik, A. C. (2006b). Live image quality assessment database release 2. http://live.ece.utexas.edu/research/quality/subjective.htm.

  • Studholme, C., Hill, D. L. G., & Hawkes, D. J. (1999). An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition, 32(1), 71–86.

    Article  Google Scholar 

  • Sun, Z. (2003). Adaptation for multiple cue integration. In IEEE international conference on computer vision and pattern recognition (vol. I, pp. 440–445), Madison, WI.

  • Sun, Z. (2006). Video halftoning. IEEE Transactions on Image Processing, 15(3), 678–686.

    Article  Google Scholar 

  • Sun, Z., & Hoogs, A. (2006). Image comparison by compound disjoint information. In IEEE international conference on computer vision and pattern recognition (pp. 857–862), New York, NY.

  • Sun, Z., & Ray, L. A. (2005). Multimodal image registration based on compound mutual information. In SPIE medical imaging conference (vol. 5747, pp. 1274–1282), San Diego, CA.

  • Swain, M., & Ballard, D. (1991). Color indexing. International Journal of Computer Vision, 7(1), 11–32.

    Article  Google Scholar 

  • Teo, P., & Heeger, D. (1994). Perceptual image distortion. In IEEE international conference on image processing (Vol. 2, pp. 982–986).

  • Thevenaz, P., & Unser, M. (2000). Optimization of mutual information for multiresolution image registration. IEEE Transactions Image Processing, 9(12), 2083–2099.

    Article  MATH  Google Scholar 

  • Tversky, A. (1977). Features of similarity. Psychological Review, 84(2), 327–352.

    Article  Google Scholar 

  • Viola, P., & Wells, III W. M. (1997). Alignment by maximization of mutual information. International Journal of Computer Vision, 24(2), 137–154.

    Article  Google Scholar 

  • VQEG. (2000). Final report from the video quality experts group on the validation of objective models of video quality assessment. http://www.vqeg.org.

  • Wandell, B. A. (1995). Foundations of vision. Sunderland: Sinauer Associates.

    Google Scholar 

  • Wang, Z., Bovik, A., Sheikh, H., & Simoncelli, E. (2004). Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Article  Google Scholar 

  • Wells, III, W. M., Viola, P., Atsumi, H., Nakajima, S., & Kikinis, R. (1996). Multi-modal volume registration by maximization of mutual information. Medical Image Analysis, 1(1), 35–51.

    Article  Google Scholar 

  • Winkler, S. (1999). Issues in vision modeling for perceptual video quality assessment. Signal Processing, 78(2), 231–252.

    Article  MATH  Google Scholar 

  • Wu, B., & Nevatia, R. (2007). Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors. International Journal of Computer Vision, 75(2), 247–266.

    Article  Google Scholar 

  • Yianilos, P. N. (1991). Normalized forms for two common metrics (Technical Report 91-082-9027-1). NEC Research Institute.

  • Yilmaz, A., Javed, O., & Shah, M. (2006). Object tracking: a survey. ACM Computing Surveys, 38(4), 1–45.

    Article  Google Scholar 

  • Zhang, J., & Rangarajan, A. (2004). Affine image registration using a new information metric. In: IEEE international conference on computer vision and pattern recognition (vol. 1, pp. 848–855).

  • Zhang, J., & Rangarajan, A. (2005). Multimodality image registration using an extensible information metric and high dimensional histogramming. In: International conference on information processing in medical imaging (pp. 725–737), Glenwood Springs, CO.

  • Zurek, W. H. (1989). Thermodynamic cost of computation, algorithmic complexity and the information metric. Nature, 341, 119–124.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Sun.

Additional information

The work was done when A. Hoogs was with GE Global Research, Niskayuna, New York.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Z., Hoogs, A. Image Comparison by Compound Disjoint Information with Applications to Perceptual Visual Quality Assessment, Image Registration and Tracking. Int J Comput Vis 88, 461–488 (2010). https://doi.org/10.1007/s11263-010-0316-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-010-0316-z

Keywords

Navigation