Skip to main content

Advertisement

Log in

Human cytomegalovirus-encoded miR-UL112 contributes to HCMV-mediated vascular diseases by inducing vascular endothelial cell dysfunction

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Human cytomegalovirus (HCMV) infection has been linked to the pathogenesis of vasculopathy by inducing dysfunction of vascular cells such as endothelial cells. Hcmv-miR-UL112 is the most well-characterized HCMV-encoded microRNA occurring in the plasma of patients with cardiovascular diseases such as hypertension, while the specific underlying pathophysiological mechanisms are yet to be defined. The current study investigated the effect of hcmv-miR-UL112 on the growth and proliferation of human umbilical vascular endothelial cells (HUVECs); it might also be associated with signaling pathways. An adenovirus vector was designed and synthesized to stably express hcmv-miR-UL112 in HUVECs. Cell Counting Kit-8 results showed that ectopically expressed hcmv-miR-UL112 can significantly increase the proliferation of HUVECs (p < 0.05). Flow cytometry revealed that the S-phase fraction in the cell cycle analysis was raised significantly after overexpression of hcmv-miR-UL112 (p < 0.05). Gene expression profile analysis, using the microarray technology, revealed 303 up-regulated and 62 down-regulated genes in HUVECs by comparing the AD-hcmv-miR-UL112-infected and control groups (p < 0.05 and > 2 fold change). Kyoto Encyclopedia of Genes and Genomes and Reactome Pathway, chosen as the functional annotation categories, were affected by hcmv-miR-UL112 adenovirus vector. The significantly altered pathways mainly include the mitogen-activated protein kinase signaling pathway, cell adhesion molecules, chemokine signaling pathway, cytokine–cytokine receptor interaction, circadian rhythm-mammal, mineral absorption, protein processing in the endoplasmic reticulum, proximal tubule bicarbonate reclamation, vasopressin-regulated water reabsorption, and arachidonic acid metabolism. In conclusion, hcmv-miR-UL112 could serve as a potential biomarker, and the miRNA-mediated regulation of signaling pathways might play significant roles in the physiological effects of hcmv-associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. N. Stern-Ginossar, B. Weisburd, A. Michalski, V.T. Le, M.Y. Hein, S.X. Huang, M. Ma, B. Shen, S.B. Qian, H. Hengel, M. Mann, N.T. Ingolia, J.S. Weissman, Decoding human cytomegalovirus. Science 338, 1088–1093 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. S. Li, J. Zhu, W. Zhang, Y. Chen, K. Zhang, L.M. Popescu, X. Ma, W.B. Lau, R. Rong, X. Yu, B. Wang, Y. Li, C. Xiao, M. Zhang, S. Wang, L. Yu, A.F. Chen, X. Yang, J. Cai, Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation 124, 175–184 (2011)

    Article  CAS  PubMed  Google Scholar 

  3. L. Yi, D.X. Wang, Z.J. Feng, Detection of human cytomegalovirus in atherosclerotic carotid arteries in humans. J. Formos. Med. Assoc. 107, 774–781 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. E. Xenaki, J. Hassoulas, S. Apostolakis, G. Sourvinos, D.A. Spandidos, Detection of cytomegalovirus in atherosclerotic plaques and nonatherosclerotic arteries. Angiology 60, 504–508 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. M. Popović, K. Smiljanić, B. Dobutović, T. Syrovets, T. Simmet, E.R. Isenocvić, Human cytomegalovirus infection and atherothrombosis. J. Thromb. Thrombolysis 33, 160–172 (2012)

    Article  PubMed  Google Scholar 

  6. M.A. Jarvis, J.A. Nelson, Human cytomegalovirus persistence and latency in endothelial cells and macrophages. Curr. Opin. Microbiol. 5, 403–407 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. C. Grahame-clarke, Human cytomegalovirus, endothelial function and atherosclerosis. Herpes. 12, 42–45 (2005)

    PubMed  Google Scholar 

  8. M. Weis, T.N. Kledal, K.Y. Lin, S.N. Panchal, S.Z. Gao, H.A. Valantine, E.S. Mocarski, J.P. Cooke, Cytomegalovirus infection impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine in transplant arteriosclerosis. Circulation 109, 500–505 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. S.M. Billstrom, R. Christensen, G.S. Worthen, Human cytomegalovirus protects endothelial cells from apoptosis induced by growth factor withdrawal. J. Clin. Virol. 25(Suppl 2), S149–S157 (2002)

    Article  Google Scholar 

  10. P. Petrakopoulou, M. Kubrich, S. Pehlivanli, B. Meiser, B. Reichart, W. von Scheidt, M. Weis, Cytomegalovirus infection in heart transplant recipients is associated with impaired endothelial function. Circulation 110, II207–212 (2004)

    Article  PubMed  Google Scholar 

  11. L.P. Lim, M.E. Glasner, S. Yekta, C.B. Burge, D.P. Bartel, Vertebrate microRNA genes. Science 299, 1540 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. D.P. Bartel, MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. F. Grey, L. Hook, J. Nelson, The functions of herpesvirus-encoded microRNAs. Med. Microbiol. Immunol. 197, 261–267 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. F. Grey, A. Antoniewicz, E. Allen, J. Saugstad, A. McShea, J.C. Carrington, J. Nelson, Identification and characterization of human cytomegalovirus-encoded microRNAs. J. Virol. 79, 12095–12099 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. F. Grey, H. Meyers, E.A. White, D.H. Spector, J. Nelson, A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog. 3, e163 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  16. E. Murphy, J. Vanicek, H. Robins, T. Shenk, A.J. Levine, Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency. Proc. Natl. Acad. Sci. USA 105, 5453–5458 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. N. Stern-Ginossar, N. Saleh, M.D. Goldberg, M. Prichard, D.G. Wolf, O. Mandelboim, Analysis of human cytomegalovirus-encoded microRNA activity during infection. J. Virol. 83, 10684–10693 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. L.M. Hook, F. Grey, R. Grabski, R. Tirabassi, T. Doyle, M. Hancock, I. Landais, S. Jeng, S. McWeeney, W. Britt, J.A. Nelson, Cytomegalovirus miRNAs target secretory pathway genes to facilitate formation of the virion assembly compartment and reduce cytokine secretion. Cell Host Microbe 15, 363–373 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. N. Stern-Ginossar, N. Elefant, A. Zimmermann, D.G. Wolf, N. Saleh, M. Biton, E. Horwitz, Z. Prokocimer, M. Prichard, G. Hahn, D. Goldman-Wohl, C. Greenfield, S. Yagel, H. Hengel, Y. Altuvia, H. Margalit, O. Mandelboim, Host immune system gene targeting by a viral miRNA. Science 317, 376–381 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. D. Nachmani, D. Lankry, D.G. Wolf, O. Mandelboim, The human cytomegalovirus microRNA miR-UL112 acts synergistically with a cellular microRNA to escape immune elimination. Nat. Immunol. 11, 806–813 (2010)

    Article  CAS  PubMed  Google Scholar 

  21. Y. Huang, Y. Qi, Y. Ma, R. He, Y. Ji, Z. Sun, Q. Ruan, The expression of interleukin-32 is activated by human cytomegalovirus infection and down regulated by hcmv-miR-UL112-1. Virol J 10, 51 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  22. H. Guo, N.T. Ingolia, J.S. Weissman, D.P. Bartel, Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. J. Fan, W. Zhang, Q. Liu, Human cytomegalovirus-encoded miR-US25-1 aggravates the oxidised low density lipoprotein-induced apoptosis of endothelial cells. Biomed. Res. Int. 2014, 531979 (2014)

    PubMed  PubMed Central  Google Scholar 

  24. F. Sandra, Y.H. Oktaviono, M.A. Widodo, Y. Dirgantara, A. Chouw, D. Sargowo, Endothelial progenitor cells proliferated via MEK-dependent p42 MAPK signaling pathway. Mol. Cell. Biochem. 400, 201–206 (2015)

    Article  CAS  PubMed  Google Scholar 

  25. M. Katz, I. Amit, Y. Yarden, Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim. Biophys. Acta 1773, 1161–1176 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. L.M. Graves, H.I. Guy, P. Kozlowski, M. Huang, E. Lazarowski, R.M. Pope, M.A. Collins, E.N. Dahlstrand, H.S. 3rd Earp, D.R. Evans, Regulation of carbamoyl phosphate synthetase by MAP kinase. Nature 403, 328–332 (2000)

    Article  CAS  PubMed  Google Scholar 

  27. Y.H. Shen, L. Zhang, B. Utama, J. Wang, Y. Gan, X. Wang, J. Wang, L. Chen, G.M. Vercellotti, J.S. Coselli, J.L. Mehta, X.L. Wang, Human cytomegalovirus inhibits Akt-mediated eNOS activation through upregulating PTEN (phosphatase and tensin homolog deleted on chromosome 10). Cardiovasc. Res. 69, 502–511 (2006)

    Article  CAS  PubMed  Google Scholar 

  28. T. Murakami, C. Mataki, C. Nagao, M. Umetani, Y. Wada, M. Ishii, S. Tsutsumi, T. Kohro, A. Saiura, H. Aburatani, T. Hamakubo, T. Kodama, The gene expression profile of human umbilical vein endothelial cells stimulated by tumor necrosis factor alpha using dna microarray analysis. J Atheroscler Thromb 7, 39–44 (2000)

    Article  CAS  PubMed  Google Scholar 

  29. C.F. Krieglstein, D.N. Granger, Adhesion molecules and their role in vascular disease. Am. J. Hypertens. 14, 44S (2001)

    Article  CAS  PubMed  Google Scholar 

  30. I.F. Charo, M.B. Taubman, Chemokines in the pathogenesis of vascular disease. Circ. Res. 95, 858–866 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. R.C. Friedman, K.K. Farh, C.B. Burge, D.P. Bartel, Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. L. Wang, A.L. Oberg, Y.W. Asmann, H. Sicotte, S.K. McDonnell, S.M. Riska, W. Liu, C.J. Steer, S. Subramanian, J.M. Cunningham, J.R. Cerhan, S.N. Thibodeau, Genome-wide transcriptional profiling reveals microRNA-correlated genes and biological processes in human lymphoblastoid cell lines. PLoS ONE 4, e5878 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  33. T. Vaissiere, R.J. Hung, D. Zaridze, A. Moukeria, C. Cuenin, V. Fasolo, G. Ferro, A. Paliwal, P. Hainaut, P. Brennan, J. Tost, P. Boffetta, Z. Herceg, Quantitative analysis of DNA methylation profiles in lung cancer identifies aberrant DNA methylation of specific genes and its association with gender and cancer risk factors. Cancer Res. 69, 243–252 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A.M. Roccaro, A. Sacco, X. Jia, A.K. Azab, P. Maiso, H.T. Ngo, F. Azab, J. Runnels, P. Quang, I.M. Ghobrial, microRNA dependent modulation of histone acetylation in Waldenstrom macroglobulinemia. Blood 116, 1506–1514 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Zhejiang Provincial Natural Science Foundation of China [Nos. LY13H020001 and LQ13H100001] and the Science and Technology Bureau of Zhoushan [No. 2012C13024].

Author information

Authors and Affiliations

Authors

Contributions

KS and LX contributed equally in performing cytology experiments and data analysis, DC undertook flow cytometry, WT was responsible for microarray data analysis, and YH is the corresponding author of this article.

Corresponding author

Correspondence to Yanyan Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Edited by Hartmut Hengel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

The complete list of significant up-regulation genes in AD-hcmv-miR-UL112 transfected HUVECs. The gene expression profiling of AD-hcmv-miR-UL112 transfected HUVECs was compared with that of negative control groups. Supplementary material 1 (DOC 557 kb)

Table S2

The complete list of significant down-regulation genes in AD-hcmv-miR-UL112 transfected HUVECs. The gene expression profiling of AD-hcmv-miR-UL112 transfected HUVECs was compared with that of negative control groups. Supplementary material 2 (DOC 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, K., Xu, L., Chen, D. et al. Human cytomegalovirus-encoded miR-UL112 contributes to HCMV-mediated vascular diseases by inducing vascular endothelial cell dysfunction. Virus Genes 54, 172–181 (2018). https://doi.org/10.1007/s11262-018-1532-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-018-1532-9

Keywords

Navigation