Skip to main content
Log in

Recombinant lentivirus-delivered short hairpin RNAs targeted to conserved coxsackievirus sequences protect against viral myocarditis and improve survival rate in an animal model

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Coxsackieviruses are important human pathogens that induce myocarditis and pancreatitis. However, there are no vaccines or therapeutic reagents for their clinical treatment. Although RNA interference (RNAi)-based approaches to the prevention of viral production have been developed recently, limitations to the in vivo delivery systems and variations in the viral target sequences still hamper the strategy. In this study, to overcome these limitations, we have constructed recombinant lentivirus-delivered short hairpin RNAs (shRNAs) against sequences in highly conserved cis-acting replication element (CRE) within the 2C protein of coxsackievirus B3 (CVB3), designated MET-2C. A recombinant lentivirus, designated Met-2C lenti, was constructed that contains the MET-2C sequence, which acts as a shRNA. Met-2C lenti clearly reduced viral production in CVB3-infected cells in vitro. Moreover, the mice injected intraperitoneally with Met-2C lenti had significant reductions in viral titers, viral myocarditis, and proinflammatory cytokines after challenge with CVB3, compared with those in GFP lenti infected control mice. Moreover, Met-2C lenti improved survival rate compared with that of the GFP lenti infected control group. Therefore, Met-2C lenti is potentially a clinical therapeutic agent for the treatment of viral myocarditis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H.T. Aretz, M.E. Billingham, W.D. Edwards, S.M. Factor, J.T. Fallon, J.J. Fenoglio, E.G. Olsen, F.J. Schoen, Am. J. Cardiovasc. Pathol. 1, 3 (1987)

    PubMed  CAS  Google Scholar 

  2. T.A. Manolio, K.L. Baughman, R. Rodeheffer, T.A. Pearson, J.D. Bristow, V.V. Michels, W.H. Abelmann, W.R. Harlan, Am. J. Cardiol. 69, 1458 (1992)

    Article  PubMed  CAS  Google Scholar 

  3. K. Klingel, M. Sauter, C.T. Bock, G. Szalay, J.J. Schnorr, R. Kandolf, Med. Microbiol. Immunol. 193, 101 (2004)

    Google Scholar 

  4. B. Maisch, A.D. Ristic, G. Hufnagel, S. Pankuweit, Cardiovasc. Pathol. 11, 112 (2002)

    Article  PubMed  CAS  Google Scholar 

  5. J.Y. Kim, E.S. Jeon, B.K. Lim, S.M. Kim, S.K. Chung, J.M. Kim, S.I. Park, I. Jo, J.H. Nam, Vaccine 23, 1672 (2005)

    Article  PubMed  CAS  Google Scholar 

  6. A. Henke, R. Zell, A. Stelzner, Antiviral Res. 49, 49 (2001)

    Article  PubMed  CAS  Google Scholar 

  7. N. Manjunath, P. Kumar, S.K. Lee, P. Shankar, Trends Immunol. 27, 328 (2006)

    Article  PubMed  CAS  Google Scholar 

  8. G. Meister, T. Tuschl, Nature 431, 343 (2004)

    Google Scholar 

  9. G.J. Hannon, J.J. Rossi, Nature 431, 371 (2004)

    Google Scholar 

  10. R. Zufferey, T. Dull, R.J. Mandel, A. Bukovsky, D. Quiroz, L. Naldini, D. Trono D, J. Virol. 72, 9873 (1998)

    PubMed  CAS  Google Scholar 

  11. K.V. Morris, J.J. Rossi, Gene Ther. 13, 553 (2006)

    Article  PubMed  CAS  Google Scholar 

  12. D.A. Rubinson, C.P. Dillon, A.V. Kwiatkowski, C. Sievers, L. Yang, J. Kopinja, D.L. Rooney, M.M. Ihrig, M.T. McManus, F.B. Gertler, M.L. Scott, L. Van Parijs, Nat. Genet. 33, 401 (2003)

    Article  PubMed  CAS  Google Scholar 

  13. R.G. Meyer, M.L. Meyer-Ficca, H. Kaiser, H. Kaiser, H.C. Selinka, R. Kandolf, J.H. Kupper, Virus Res. 104, 17 (2004)

    Article  PubMed  CAS  Google Scholar 

  14. K.U. Knowlton, E.S. Jeon, N. Berkley, R. Wessely, S. Huber, J. Virol. 70, 7811 (1996)

    PubMed  CAS  Google Scholar 

  15. H.S. Lee, J. Ahn, Y. Jee, I.S. Seo, E.J. Jeon, E.S. Jeon, C.H. Joo, Y.K. Kim, H. Lee, J. Gen. Virol. 88, 2003 (2007)

    Article  PubMed  CAS  Google Scholar 

  16. Y. Seko, N. Takahashi, H. Yagita, K. Okumura, Y. Yazaki, J. Pathol. 183, 105 (1997)

    Article  PubMed  CAS  Google Scholar 

  17. S. Schubert, H.P. Grunert, H. Zeichhardt, D. Werk, V.A. Erdmann, J. Kurreck, J. Mol. Biol. 346, 457 (2005)

    Article  PubMed  CAS  Google Scholar 

  18. S. Schubert, H.P. Grunert, H. Zeichhardt, D. Werk, V.A. Erdmann, J. Kurreck, J. Mol. Biol. 346, 457 (2005)

    Article  PubMed  CAS  Google Scholar 

  19. J. Yuan, P.K. Cheung, H.M. Zhang, D. Chau, D. Yang, J. Virol. 79, 2151 (2005)

    Article  PubMed  CAS  Google Scholar 

  20. J. Ahn, E.S. Jun, H.S. Lee, S.Y. Yoon, D. Kim, C.H. Joo, Y.K. Kim, H. Lee, J. Virol. 79, 8620 (2005)

    Article  PubMed  CAS  Google Scholar 

  21. D. Werk, S. Schubert, V. Lindig, H.P. Grunert, H. Zeichhardt, V.A. Erdmann, J. Kurreck, Biol. Chem. 386, 857 (2005)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by grant no. R01-2005-000-10668-0 from the Basic Research Program of the Korea Science and Engineering Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hwan Nam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YJ., Ahn, J., Jeung, SY. et al. Recombinant lentivirus-delivered short hairpin RNAs targeted to conserved coxsackievirus sequences protect against viral myocarditis and improve survival rate in an animal model. Virus Genes 36, 141–146 (2008). https://doi.org/10.1007/s11262-007-0192-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-007-0192-y

Keywords

Navigation