Skip to main content

Advertisement

Log in

Bioclimatic niches of selected endemic Ixora species on the Philippines: predicting habitat suitability due to climate change

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The pantropical genus Ixora is highly diverse, with several species endemic to the Philippines. Owing to their endemic nature, many of these species are endangered and little is known about their basic biology. This study aimed to establish baseline information about the bioclimatic niches of Ixora species endemic to the Philippines, determine suitable areas and potential range shifts under future climate conditions, and identify priority areas for conservation and future research. Locality records of 12 endemic Ixora species from the Philippine archipelago were analyzed, with a particular focus on the five most abundant species I. auriculata, I. bartlingii, I. cumingiana, I. macrophylla, and one island endemic species, Ixora palawanensis. Bioclimatic variables from the WorldClim database at 2.5′ resolution were used, with a focus on annual means and seasonality of temperature and precipitation as well as precipitation of the warmest quarter. Analysis of the relationships of the species locations with the bioclimatic variables showed that the bioclimatic niches of the five focal Ixora species generally had narrow temperature and wider precipitation niches. Species distribution modeling with the model Maxent suggested that I. auriculata and I. bartlingii will likely shift their geographic distributions southwards under predicted levels of climate change, while I. cumingiana and I. macrophylla were found to likely expand their ranges. Ixora palawanensis, in contrast, was predicted to decrease its potential distribution with future climate change. Further, results of species distribution modeling for the rare endemic Ixora species I. bibracteata, I. chartacea, I. ebracteolata, I. inaequifolia, I. longistipula, I. luzoniensis, and I. macgregorii were presented, which, however, had much less observation points and therefore only provide a first estimate of potential species distributions. The generated potential habitat suitability maps can assist policy makers in designing conservation strategies for the species and in identifying areas with potential to withstand climate change until at least 2080.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barve N, Barve V, Jimenez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberon J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model 222:1810–1819

    Article  Google Scholar 

  • Bivand R, Keitt T, Rowlingson B (2014) rgdal: bindings for the geospatial data abstraction library. R package version 0.8-16. http://CRAN.R-project.org/package=rgdal. Accessed 08 Jan 2015

  • Center for International Earth Science Information Network (2013) Gridded Population of the World (GPW), v3. http://sedac.ciesin.columbia.edu/data/collection/gpw-v3. Accessed 06 Sept 2012

  • Chen L, Chu C, Huang M (2003) Inflorescence and flower development in Chinese Ixora. J Am Soc Hortic Sci 128:23–28

    Google Scholar 

  • Conservation International (2012) Biodiversity hotspots: Philippines. http://www.conservation.org/How/Pages/Hotspots.aspx. Accessed 08 Jan 2015

  • Convention on Biological Diversity (2010) Global biodiversity outlook 3 (GBO-3). Montreal, Canada: secretariat of the convention on biological diversity. http://www.cbd.int/GBO3/. Accessed 08 Jan 2015

  • Cox CB, Moore PD (2000) Biogeography an ecological and evolutionary approach, 6th edn. Blackwell Science Ltd, Oxford

    Google Scholar 

  • Cruz RVO (1997) Adaptation and mitigation measures for climate change: impacts on the forestry sector. In: Proceedings of the consultation meeting for the international conference on tropical forests and climate change. Environmental Forestry Programme, College of Forestry and Natural Resources, University of the Philippines Los Baños, College, Laguna

  • Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science 292:673–679

    Article  CAS  PubMed  Google Scholar 

  • Davis AP, Govaerts R, Bridson DM, Ruhsam M, Moat J (2009) A global assessment of distribution, diversity, endemism, and taxonomic effort in the Rubiaceae. Ann Mo Bot Gard 96:68–78

    Article  Google Scholar 

  • Davis AP, Gole TW, Baena S, Moat J (2012) The impact of climate change on indigenous Arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS One. doi:10.1371/journal.pone.0047981

    Google Scholar 

  • De Block P (1998) The African species of Ixora (Rubiaceae—Pavetteae). Opera Bot Belg 9:1–217

    Google Scholar 

  • De Boeck HJ, Lemmens CMHM, Zavalloni C et al (2008) Biomass production in experimental grasslands of different species richness during three years of climate warming. Biogeosciences 5:585–894

    Article  Google Scholar 

  • Department of Environment and Natural Resources (2007) Establishing the national list of threatened Philippine plants and their categories, and the list of other wildlife species. Department of Environment and Natural Resources Administrative Order No. 2007-01, DENR, Quezon City. http://server2.denr.gov.ph/files/dao-2007-01_200.pdf. Accessed 08 Jan 2015

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Ferranini A (2012) I think different: models of climate warming impact on plant species are unrealistic. Environ Skept Crit 1:30–33

    Google Scholar 

  • Fischer D, Thomas SM, Niemitz F, Reineking B, Beierkuhnlein C (2011) Projection of climatic suitability for Aedes albopictus Skuse (Culicidae) in Europe under climate change conditions. Glob Planet Change 78:54–64

    Article  Google Scholar 

  • Fischlin A, Midgley GF, Price JT, Leemans R, Gopal B, Turley C, et al. (2007). Ecosystems, their properties, goods and services. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds.), Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel of climate change. Cambridge University Press, Cambridge, pp 211e272. http://www.ipcc.ch/pdf/assessment-report/ar4/wg2/ar4-wg2-chapter4.pdf. Accessed 08 Jan 2015

  • Fløjgaard C, Normand S, Skov F, Svenning JC (2010) Deconstructing the mammal species richness pattern in Europe-towards an understanding of the relative importance of climate, biogeographic history, habitat heterogeneity and humans. Glob Ecol Biogeogr 20:218–230

    Article  Google Scholar 

  • Garcia K, Lasco R, Ines A, Lyon B, Pulhin F (2013) Predicting geographic distribution and habitat suitability due to climate change of selected threatened forest tree species in the Philippines. Appl Geogr 44:12–22

    Article  Google Scholar 

  • Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, Oxford

    Google Scholar 

  • Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    Article  CAS  PubMed  Google Scholar 

  • Heikkinen RK, Luoto M, Araujo MB, Virkkala R, Thuiller W, Sykess MT (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:1–27

    Article  Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modelling methods. Ecography 29:773–785

    Article  Google Scholar 

  • Hijmans RJ (2014) Raster: geographic data analysis and modeling. R package version 2.3-12. http://CRAN.R-project.org/package=raster. Accessed 08 Jan 2015

  • Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Change Biol 12:2272–2281

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hijmans RJ, Phillips D, Leathwick J, Elith J (2014) dismo: species distribution modeling. R package version 1.0-5. http://CRAN.R-project.org/package=dismo. Accessed 08 January 2015

  • Hirzel AH, Le Lay G (2008) Habitat suitability modelling and niche theory. J Appl Ecol 45:1372–1381

    Article  Google Scholar 

  • Huntley B (1991) How plants respond to climate change: migration rates, individualism and the consequences for plant communities. Ann Bot 67:15–22

    Google Scholar 

  • Warnes GR. Includes R source code and/or documentation contributed by: Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M and Venables B (2013) gplots: Various R programming tools for plotting data. R package version 2.11.0.1. http://CRAN.R-project.org/package=gplots. Accessed 08 Jan 2015

  • Inouye H, Takeda Y, Nishimura H, Kanomi A, Okuda T, Puff C (1988) Chemotaxonomic studies of rubiaceous plants containing iridoid glycosides. Phytochemistry 27:2591–2598

    Article  CAS  Google Scholar 

  • Körner C (1998) Tropical forests in a CO2-rich world. Clim Change 39:297–315

    Article  Google Scholar 

  • Körner C (2003) Limitation and stress—always or never? J Veg Sci 14:141–143

    Google Scholar 

  • Körner C, Basler D (2010) Phenology under global warming. Science 327:1461–1462

    Article  PubMed  Google Scholar 

  • Lasco R, Pulhin F, Cruz R, Roy S, Sanchez P (2008) Forest responses to changing rainfall in the Philippines. In: Leary N, Conde C, Kulkarni J, Nyong A, Pulhin J (eds) Climate change and vulnerability. Earthscan, London, pp 49–66

    Google Scholar 

  • Llorens L, Peñuelas J, Estiarte M, Bruna P (2004) Contrasting growth changes in two dominant species of a Mediterranean shrubland submitted to experimental drought and warming. Ann Bot 94:843–853

    Article  PubMed Central  PubMed  Google Scholar 

  • Midgley GF, Hannah L, Millar D, Thuiller W, Booth A (2003) Developing regional and species-level assessments of climate change impacts on biodiversity in the cape floristic region. Biol Conserv 112:87–97

    Article  Google Scholar 

  • Miller C, Urban DL (1999) Forest pattern, fire, and climatic change in the Sierra Nevada. Ecosystems 2:76–87

    Article  Google Scholar 

  • Morueta-Holme N, Fløjgaard C, Svenning JC (2010) Climate change risks and conservation implications for a threatened small-range mammal species. PLoS One. doi:10.1371/journal.pone.0010360

    PubMed Central  PubMed  Google Scholar 

  • Mouly A, Razafimandimbison S, Florence J, Jeremie J, Bremer B (2009) Paraphyly of Ixora and new tribal delimitation of Ixoreae (Rubiaceae): inference from combined chloroplast (rps16, rbcl, and trnT-F) sequence data. Ann Mo Bot Gard 96:146–160

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Ndayishimiye J, Greve M, Stoffelen P, Bigendako MJ, De Canniere C, Svenning J, Bogaert J (2012) Modelling the spatial distribution of endemic Caesalpinioideae in Central Africa, a contribution to the evaluation of actual protected areas in the region. Int J Biodivers Conserv 4:118–129

    Google Scholar 

  • Niu S, Wan S (2008) Warming changes plant competitive hierarchy in a temperate steppe in northern China. J Plant Ecol 1:103–110

    Article  Google Scholar 

  • Ohlemüller R, Anderson BJ, Araújo MB, Butchart SHM, Kudrna O, Ridgely RS, Thomas CD (2008) The coincidence of climatic and species rarity: high risk to small-range species from climate change. Biol Lett 4:568–572

    Article  PubMed Central  PubMed  Google Scholar 

  • Olalla-Tarraga MA, McInnes L, Bini LM, Diniz-Filho JAF, Fritz SA, Hawkins BA, Hortal J, Orme CDL, Rahbeks C, Rodriguez MA, Purvis A (2011) Climatic niche conservatism and the evolutionary dynamics in species range boundaries: global congruence across mammals and amphibians. J Biogeogr 38:2237–2247

    Article  Google Scholar 

  • Oney B, Reineking B, O’Neill G, Kreyling J (2013) Intraspecific variation buffers projected climate change impacts on Pinus contorta. Ecol Evol 3:437–449

    Article  PubMed Central  PubMed  Google Scholar 

  • Ong PS, LE Afuang, Rosell Ambal RG (eds) (2002) Philippine biodiversity conservation priorities: a second iteration of the National Biodiversity Strategy and action plan. Department of Environment and Natural Resources-Protected Areas and Wildlife Bureau, Conservation International Philippines, Biodiversity Conservation Program-University of the Philippines Center for Integrative and Development Studies, and Foundation for the Philippine Environment, Quezon City

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (2007) Technical Summary. In: Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 23–78

  • Pearman PB, Lavergne S, Roquet C, Wüest R, Zimmermann NE, Thuiller W (2014) Phylogenetic patterns of climatic habitat and trophic niches in a European avian assemblage. Glob Ecol Biogeogr 23:414–424

    Article  PubMed Central  PubMed  Google Scholar 

  • Pearson R, Dawson T (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Res 12:361–371

    Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  • Pebesma EJ, Bivand RS (2005) Classes and methods for spatial data in R. R News 5(2), http://cran.r-project.org/doc/Rnews/. Accessed 08 Jan 2015

  • Pelser PB, Barcelona JF, Nickrent DL (eds) (2011) onwards. Co’s digital flora of the Philippines. http://www.philippineplants.org. Accessed 02 June 2012

  • Philippine Atmospheric, Geophysical and Astronomical Services Administration (2011) Climate change in the Philippines. http://kidlat.pagasa.dost.gov.ph/climate-agromet/climate-change-in-the-philippines. Accessed 26 Nov 2012

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Posa MRC, Diesmos AC, Sodhi NS, Brooks TM (2008) Hope for threatened tropical biodiversity: lessons from the Philippines. Bioscience 58:231–240

    Article  Google Scholar 

  • Prentice IC, Jolly D (2000) Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. J Biogeogr 27:507–519

    Article  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rajendra K, Nitin G, Mahavir G, Sudhir V, Mangesh K (2013) Evaluation on anti-inflammatory and antioxidant potential of Ixora coccinea, Linn ethanolic root extract. Int J Drug Dev Res 5:1–10

    Google Scholar 

  • Reineking B, Schröder B (2006) Constrain to perform: regularization of habitat models. Ecol Model 193:675–690

    Article  Google Scholar 

  • Soberón J (2007) Grinellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    Article  PubMed  Google Scholar 

  • Svenning JC, Skov F (2007) Ice age legacies in the geographical distribution of tree species richness in Europe. Glob Ecol Biogeogr 16:234–245

    Article  Google Scholar 

  • Teketay D (1999) History, botany and ecological requirements of Coffee. Walia J Ethiop Wildl Nat Hist Soc 20:28–50

    Google Scholar 

  • Thiers B (2013) Index herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden Virtual Herbarium. http://sweetgum.nybg.org/ih/. Accessed 8 Sept 2014

  • Thuiller W, Albert C, Araujo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species distributions: future challenges. Perspect Plant Ecol Evol Syst 9:137–152

    Article  Google Scholar 

  • Trisurat Y, Shrestha RP, Kjelgren R (2011) Plant species vulnerability to climate change in Peninsular Thailand. Appl Geogr 31:1106–1114

    Article  Google Scholar 

  • Urbanek S (2013). rJava: low-level R to Java interface. R package version 0.9-6. http://CRAN.R-project.org/package=rJava. Accessed 08 Jan 2015

  • Vetaas OR (2002) Realized and potential climate niches: a comparison of four Rhododendron tree species. J Biogeogr 29:545–554

    Article  Google Scholar 

  • Vié J-C, Hilton-Taylor C, Stuart SN (2008) Wildlife in a changing world: a analysis of the 2008 IUCN red list of threatened species. International Union for Conservation of Nature, Gland

    Google Scholar 

  • Wahab F, Subramaniam K, Suriyamoorthy S, Subburaj SP (2012) Phytochemical analysis and antagonistic activity of Ixora macrothyrsa on multidrug resistant bacteria. Asian Pac J Trop Biomed 2:1312–1316

    Article  Google Scholar 

  • Walther G-R, Berger S, Sykes MT (2005) An ecological ‘‘footprint’’ of climate change. Proc R Soc Lond B 272:1427–1432

    Article  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883

    Article  PubMed  Google Scholar 

  • Wen K, Chiu H, Fan P, Chen C, Wu S, Chang J, Chiang H (2011) Antioxidant activity of Ixora parviflora in a cell/cell-free system and in UV-exposed human fibroblasts. Molecules 16:5735–5752

    Article  CAS  PubMed  Google Scholar 

  • White TA, Campbell BD, Kemp PD, Hunt CL (2000) Sensitivity of three grassland communities to simulated extreme temperature and rainfall events. Glob Change Biol 6:671–684

    Article  Google Scholar 

  • Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Davies TJ, Grytnes JA, Harrison SP, Hawkins BA, Holt RD, Mccain CM, Stephens PR (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324

    Article  PubMed  Google Scholar 

  • Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100AD. Proc Nat Acad Sci 104:5738–5742

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A (2008) Predicting species distributions working group. Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Article  Google Scholar 

  • Woodward FI (1996) Climate and plant distribution. Cambridge University Press, Cambridge

    Google Scholar 

  • Yang LH, Rudolf VHW (2010) Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol Lett 13:1–10

    Article  CAS  PubMed  Google Scholar 

  • Yoga Latha L, Darah I, Jain K, Sasidharan S (2012) Pharmacological screening of methanolic extract of Ixora species. Asian Pac J Trop Biomed 2:149–151

    Article  Google Scholar 

  • Yusuf AA, Francisco HA (2009) Climate change vulnerability mapping for Southeast Asia. http://www.eepsea.org/o-k2/view-item/id-301/Itemid-385/. Accessed 26 Nov 2012

Download references

Acknowledgments

We are grateful to the following herbaria and their staff for providing loans and/or access to collections: A, BK, BR, C, CAHUP, K, L, NY, P, PNH, PPC, SAN, and US. Dr. A. Townsend Peterson, for his helpful comments in the earlier drafts of this paper. The present work is part of the doctoral dissertation of C.I. Banag, for which financial assistance was obtained from Philippine Commission on Higher Education (CHED), NAGAO Natural Environment Foundation (NEF), DAAD STIBET Grants for Doctoral Studies, and the Katholischer Akademischer Ausländer–Dienst (KAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Banag.

Additional information

Communicated by Joseph Paul Messina.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banag, C., Thrippleton, T., Alejandro, G.J. et al. Bioclimatic niches of selected endemic Ixora species on the Philippines: predicting habitat suitability due to climate change. Plant Ecol 216, 1325–1340 (2015). https://doi.org/10.1007/s11258-015-0512-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-015-0512-6

Keywords

Navigation