Skip to main content

Advertisement

Log in

Genetic diversity and drivers of genetic differentiation of Reaumuria soongorica of the Inner Mongolia plateau in China

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

We quantified genetic diversity and gene flow among eight populations of Reaumuria soongorica in Inner Mongolia, China. Our results showed that genetic differentiation of R. soongorica across the Inner Mongolian plateau is primarily clinal in nature and is driven primarily by differential landscape resistance across areas with changing patterns of seasonal precipitation, perhaps as a result of differential timing of reproductive phenology along precipitation gradients. Finding that seasonal patterns of precipitation, and not temperature, drive population connectivity and gene flow may have important implications for predicting the effects of climate change on this keystone foundation species and devising effective strategies to utilize it in restoration efforts to ameliorate ongoing desertification in the region. Genetic diversity was highest in the western part of the sampled population, perhaps indicating that this region has historically harbored the highest effective population size of the species or may have served as the source of recent range expansion to other parts of the sampled range which exhibited lower genetic diversity. Understanding the ecological drivers of these relationships might be critical to resolving the causes of the geographical pattern of diversity, and could be important in understanding the ecology of the species sufficiently to anticipate climate change effects and effectively implement management strategies to restore the species and combat desertification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amos J, Bennet AF, Mac-Nally R, Newell G, Radford JQ, Pavlova A, Thompson J, White M, Sunnucks P (2012) Predicting landscape genetic consequences of habitat loss, fragmentation and mobility for species of woodland birds. PLoS One 7:e30888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bai J, Ge QS, Dai JH, Wang Y (2010) Relationship between woody plants phenology and climate factors in Xi’an, China. Chin J Plant Ecol 34(11):1274–1282

    Google Scholar 

  • Beebee T, Rowe G (2003) An introduction to molecular ecology. Oxford University Press, New York

    Google Scholar 

  • Chai XY, Chen SL, Xu W (2010) Using inter-simple sequence repeat markers to analyze the genetic structure of natural Pteroceltis tatarinowii populations and implications for species conservation. Plant Syst Evol 285:65–73

    Article  CAS  Google Scholar 

  • Coyne JA, Orr AH (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • Cui DF (1988) A primary study on the classification, distribution, ecological characteristics, morphological characteristics and anatomical characteristics of genus Reaumuria in China. Arid Zone Res 1:65–69

    Google Scholar 

  • Cushman SA (2015) Pushing the envelope in genetic analysis of species invasion. Mol Ecol 24:259–262

  • Cushman SA, Landguth EL (2010) Spurious correlations and inference in landscape genetics. Mol Ecol 19:3592–3602

    Article  PubMed  Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene-flow in complex landscapes: testing multiple models with causal modeling. Am Nat 168:486–499

    Article  PubMed  Google Scholar 

  • Cushman SA, Wasserman TN, Landguth E, Shirk AJ (2013) Re-evaluating causal modeling with Mantel tests in landscape genetics. Diverstiy 5:51–72. doi:10.3390/d50x000x

    Article  Google Scholar 

  • Cushman SA, Max T, Meneses N, Evans LM, Ferrier S, Honchak B, Whitham TG, Allan GJ (2014) Landscape genetic connectivity in a riparian foundation tree is jointly driven by climatic gradients and river networks. Ecol Appl 24:1000–1014. doi:10.1890/13-1612.1

  • de León LF, Bermingham E, Podos J, Hendry AP (2010) Divergence with gene flow as facilitated by ecological differences: within-island variation in Darwin’s finches. Philos Trans R Soc B 365:1041–1052

    Article  Google Scholar 

  • Doyle J (1999) DNA protocols for plants—CTAB total DNA isolation. In: Hewitt GM, Johnston A (eds) Molecular techniques in taxonomy. Springer, Berlin, pp 283–293

    Google Scholar 

  • Dyer RJ, Nason JD, Garrick RC (2010) Landscape modeling of gene flow: improved power using conditional genetic distance derived from topology of population networks. Mol Ecol 19:3746–3759

    Article  PubMed  Google Scholar 

  • Editorial Committee of Flora Reipublicae Popular Sinicae, Chinese Academy of Science (1990) Flora of China (50 vol part 2). Science Press, Beijing

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffer L, Smouse PE, Quatrio JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data [J]. Genetics 131:479–2491

    Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gavrilets S (2000) Waiting time to parapatric speciation. Proc R Soc B 570(267):2483–2492

    Article  Google Scholar 

  • Gavrilets S, Vose A (2007) Case studies and mathematical models of ecological speciation. 2. Palms on an oceanic island. Mol Ecol 16:2910–2921

    Article  PubMed  Google Scholar 

  • Guo ZX, Zhang XN, Wang ZM et al (2012) Responses of vegetation phenology in Northeast China to climate change. Chin J Ecol 29(3):578–585

    Google Scholar 

  • Gupta M, Chyi YS, Romero-Severson J, Owen JL (1994) Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor Appl Genet 89:998–1006

    CAS  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high-resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hou XY (1983) Vegetation of China with reference to its geographical distribution. Ann Mo Bot Gard 70:509–549

    Google Scholar 

  • Inner Mongolia and Ningxia Comprehensive expedition of Chinese academy of sciences (1985) Vegetation of Inner Mongolia. Science Press, Beijing

    Google Scholar 

  • Iverson LR, Prasad AM (2002) Potential redistribution of tree species habitat under five climate change scenarios in the eastern US. For Ecol Manag 155:205–222

    Article  Google Scholar 

  • Jiang HQ (2004) Plants ecology. Higher Education Press, Beijing

    Google Scholar 

  • Legendre P, Fortin MJ (2010) Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol 10:831–844

    Article  Google Scholar 

  • Li B (1990) Natural resources and environment research in Ordos Plateau, Inner Mongolia. Science Press, Beijing

    Google Scholar 

  • Li JP, Yang XG, Fu H, Zhang BL (2005a) The content and distribution characteristics of some osmotic adjusting materials in three species of desert plants in Alashan desert of northwest China. Pratacult Sci 22(9):35–38

    CAS  Google Scholar 

  • Li X, Wang YC, Zheng R (2005b) Water parameters of xeric shrubs in west Erdos region (I). J Desert Res 25(4):581–586

    CAS  Google Scholar 

  • Li XL, Chen J, Wang G (2008) Spatial autocorrelation analysis of ISSR genetic variation of Reaumuria soongorica population in northwest of China. J Desert Res 28(3):469–472

    Google Scholar 

  • Li Z, Chen J, Zhao G-F, Guo Y-P, Kou Y-X, Ma Y-Z, Wang G, Ma X-F (2012) Response of a desert shrub to past geological and climatic change: a phylogeographic study of Reamuria soongorica (Tabmaricaceae) in western China. J Syst Evol 50:351–361

    Article  Google Scholar 

  • Liu JQ, Qiu MX, Pu JC, Lu ZM (1982) The typical extreme xerophyte —Reaumuria soongorica in the desert of China. Acta Bot Sin 24(5):485–488

    Google Scholar 

  • Ma YQ (1989) Flora of Inner Mongolia, vol 3, 2nd edn. The Peoples Press of Inner Mongolia, Hohhot

    Google Scholar 

  • Ma MH, Kong LS (1998) The bio-ecological characteristics of Reaumuria soongorica on the border of oasis at Hutubi, Xinjiang. Acta Phytoecol Sin 22(3):237–244

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • McKinnon JS, Mori S, Blackman BK, David L, Kingsley DM et al (2004) Evidence for ecology’s role in speciation. Nature 429:294–298

    Article  CAS  PubMed  Google Scholar 

  • Meirmans PG (2012) The trouble with isolation by distance. Mol Ecol 21:2839–2846

    Article  PubMed  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:282–292

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niemiller ML, Fitzpatrick BM, Miller BT (2008) Recent divergence-with-gene-flow in Tenessee cave salamanders (Plethodontidae; Gyrinophylus) inferred from gene genealogies. Mol Ecol 17:2258–2275

    Article  CAS  Google Scholar 

  • Nix H (1986) A biogeographic analysis of Australian elapid snakes. In: Atlas of elapid snakes of Australia. Australian Government Publishing Service, Canberra

  • Nosil P (2008) Speciation with gene flow could be common. Mol Ecol 17:2103–2106

    Article  PubMed  Google Scholar 

  • Pritchard JK, Stephens P, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qian W, Ge S, Hong DY (2001) Genetic variation within and among populations of a wild rice Oryza granulate from China detected by RAPD and ISSR markers. Theor Appl Genet 102:440–449

    Article  CAS  Google Scholar 

  • Qian Z-Q, Xu L, Wang Y-L, Yang J, Zhao G-F (2008) Ecological genetics of Reamuria soongorica (Pall.) Maxim. population in the oasis-desert ecotone in Fukang, Xinjiang, and its implications for molecular evolution. Biochem Syst Ecol 36:593–601

    Article  CAS  Google Scholar 

  • Rehfeldt GE, Crookston NL, Warwell MV, Evans JS (2006) Empirical analyses of plant-climate relationships for the western United States. Int J Plant Sci 167(6):1123–1150

    Article  Google Scholar 

  • Schwartz MK, McKelvey KS (2009) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10(2):441–452

  • Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool 35:627–632

    Article  Google Scholar 

  • Song WM, Zhou HY, Jia RL, Zhao X, Feng L, Tan HJ (2008) Response of photosynthesis function and trehalose content of four desert plants to gradual drought stress. J Desert Res 28:449–454 (in Chinese)

  • Song CQ, You SC, Ke LH, Liu GH, Zhong XK (2012a) Phenological variation of typical vegetation types in northern Tibet and its response to climate changes. Acta Ecol Sin 32(4):1045–1055

    Article  Google Scholar 

  • Song XM, Yang JY, Lv MT, Yang M, Zhang ZR (2012b) Responses of Reaumuria soongorica seed germination to salt stress and moderate drought. J Desert Res 32(6):1674–1680

    Google Scholar 

  • Wang YR, Zeng YJ, Fu H, Chen SK (2002a) Affects of over grazing and enclosure on desert vegetation succession of Reaumuria soongrica. J Desert Res 22(4):321–327

    Google Scholar 

  • Wang YR, Zeng YJ, Zhang BL, Ta LT (2002b) Water distribution patterns in different degraded desert grasslands of Reaumurta soongorica. Chin J Appl Ecol 13(8):962–966

    Google Scholar 

  • Wasserman TN, Cushman SA, Schwartz MK, Wallin DO (2010) Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landsc Ecol 25:1601–1612

    Article  Google Scholar 

  • Weising K, Atkinson RG, Gardner RC (1995) Genomic fingerprinting by microsatellite-primed PCR: a critical evaluation. PCR Methods Appl 4:249–255

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1931) Statistical methods in biology. J Am Stat Assoc 26(173):155–163

    Article  Google Scholar 

  • Wu ZY (1980) Vegetation of China. Science Press, Beijing

    Google Scholar 

  • Xiao SC, Xiao HL, Song YX, Duan ZH, Lu MF (2006) Dendrochronology study on response of Reaumurta soongorica to water-heat variation. J Desert Res 26(4):548–552

    Google Scholar 

  • Yang JY, Cushman SA, Yang J, Yang MB, Bao TJ (2013) Effects of climatic gradients on genetic diversification of Caragana on the Ordos plateau, China. Landsc Ecol 28(9):1729–1741

    Article  CAS  Google Scholar 

  • Yeh FC, Yang RC, Boyle T (1999) POPGENE. Microsoft window-based freeware for population genetic analysis. Release 1.31. University of Alberta, Edmonton

    Google Scholar 

  • Yong SP (1990) Study on the basic characteristics of desert flora. J Inn Mongolia Univ 21(2):241–247

    Google Scholar 

  • Zeng YJ, Wang YR, Zhuang GH, Yang ZS (2004) Seed germination responses of Reaumuria soongorica and Zygophyllum xanthoxylum to drought stress and sowing depth. Acta Ecol Sin 24(8):1630–1634

    Google Scholar 

  • Zhang DY (2005) Discuss on some systematical problems of Tamaricaceae. Acta Bot Yunnanica 27(5):471–478

    Google Scholar 

  • Zhang YJ, Gao RX, Li QF (2008) Analysis on the population genetic diversity of desert shrub Reaumuria soongorica in disturbed habitats. J Arid Land Resour Environ 22(3):147–151

    Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by The State Key Basic Research Development Programme of China (Grant No. 2012CB722201),science and technology research projects of Inner Mongolia Education Department of China (NJ10002), The Natural Science Foundation of Inner Mongolia Autonomous Region of China (2014MS0350), and US Forest Service Rocky Mountain Research Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel A. Cushman.

Additional information

Communicated by Siegy Krauss.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 357 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Cushman, S.A., Song, X. et al. Genetic diversity and drivers of genetic differentiation of Reaumuria soongorica of the Inner Mongolia plateau in China. Plant Ecol 216, 925–937 (2015). https://doi.org/10.1007/s11258-015-0479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-015-0479-3

Keywords

Navigation