Skip to main content

Advertisement

Log in

Host trait preferences and distribution of vascular epiphytes in a warm-temperate forest

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

To illustrate the ecological factors and process leading to the observed diversity patterns of vascular epiphytes, we examined the effect and importance of host tree traits on epiphyte richness and spatial aggregation of epiphytes. The study was conducted in warm-temperate forest in Japan. The recorded host traits were diameter, height, species, habitat topography, and growth rate, and we analyzed the effects and importance of these traits on three species groups: total epiphytic species, epiphytic orchid species, and epiphytic pteridophyte species. Diameter and species of host trees had the greatest influence on epiphytes and their magnitudes were roughly similar in all species groups. Growth rate and topography were less important than host size and species. Growth rate had a negative effect on all three groups, and topography was important for pteridophytes. Epiphyte richness did not exhibit clear spatial aggregation. Our results suggest that size, stability, and quality of the host are equally important in determining epiphyte colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bailey TC, Gatrell AC (1995) Interactive spatial data analysis. Longman, Essex

    Google Scholar 

  • Barthlott W, Schmit-Neuerburg V, Nieder J, Engwald S (2001) Diversity and abundance of vascular epiphytes: a comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecol 152:145–156. doi:10.1023/A:1011483901452

    Article  Google Scholar 

  • Benavides AM, Wolf JHD, Duivenvoorden JF (2006) Recovery and succession of epiphytes in upper Amazonian fallows. J Trop Ecol 22:705–717. doi:10.1017/S0266467406003580

    Article  Google Scholar 

  • Benzing DH (1990) Vascular epiphytes. Cambridge University Press, Cambridge

    Google Scholar 

  • Burns KC, Dawson J (2005) Patterns in the diversity and distribution of epiphytes and vines in a New Zealand forest. Austral Ecol 30:883–891. doi:10.1111/j.1442-9993.2005.01532.x

    Article  Google Scholar 

  • Callaway RM, Reinhart KO, Moore GW, Moore DJ, Pennings SC (2002) Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia 132:221–230. doi:10.1007/s00442-002-0943-3

    Article  Google Scholar 

  • Dawson JW, Sneddon BV (1969) The New Zealand rain forest: a comparison with tropical rain forest. Pac Sci 23:131–147

    Google Scholar 

  • Flores-Palacios A, García-Franco JG (2006) The relationship between tree size and epiphyte species richness: testing four different hypotheses. J Biogeogr 33:323–330. doi:10.1111/j.1365-2699.2005.01382.x

    Article  Google Scholar 

  • Fortin M-J, Dale M (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Frei JK, Dodson CH (1972) The chemical effect of certain bark substrates on the germination and early growth of epiphytic orchids. Bull Torrey Bot Club 99:301–307. doi:10.2307/2997072

    Article  Google Scholar 

  • Gentry AH, Dodson CH (1987) Diversity and biogeography of neotropical vascular epiphytes. Ann Mo Bot Gard 74:205–233. doi:10.2307/2399395

    Article  Google Scholar 

  • Hietz P, Hietz-Seifert U (1995) Composition and ecology of vascular epiphyte communities along an altitudinal gradient in central Veracruz, Mexico. J Veg Sci 6:487–498. doi:10.2307/3236347

    Article  Google Scholar 

  • Ishida H, Hattori T, Hashimoto Y (2005) Comparison of species composition and richness among primeval, natural, and secondary lucidophyllous forests in southeastern Kyushu, Japan. Veg Sci 22:71–86

    Google Scholar 

  • Johansson D (1974) Ecology of vascular epiphytes in West African rain forest. Acta Phytogeogr Suec 59:1–129

    Google Scholar 

  • Laube S, Zotz G (2003) Which abiotic factors limit vegetative growth in a vascular epiphyte? Funct Ecol 17:598–604. doi:10.1046/j.1365-2435.2003.00760.x

    Article  Google Scholar 

  • Laube S, Zotz G (2006) Neither host-specific nor random: vascular epiphytes on three tree species in a Panamanian lowland forest. Ann Bot (Lond) 97:1103–1114. doi:10.1093/aob/mcl067

    Article  Google Scholar 

  • Löbel S, Snäll T, Rydin H (2006) Species richness patterns and metapopulation processes—evidence from epiphyte communities in boreo-nemoral forest. Ecography 29:169–182. doi:10.1111/j.2006.0906-7590.04348.x

    Article  Google Scholar 

  • Machon N, Bardin P, Mazer SJ, Moret J, Godelle B, Austerlitz F (2003) Relationship between genetic structure and seed and pollen dispersal in the endangered orchid Spiranthes spiralis. New Phytol 157:677–687. doi:10.1046/j.1469-8137.2003.00694.x

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. Chapman & Hall, London

    Google Scholar 

  • Mehltreter K, Flores-Palacios A, García-Franco JG (2005) Host preferences of low-trunk vascular epiphytes in a cloud forest of Veracruz, Mexico. J Trop Ecol 21:651–660. doi:10.1017/S0266467405002683

    Article  Google Scholar 

  • Migenis LE, Ackerman JD (1993) Orchid-phorophyte relationships in a forest watershed in Puerto Rico. J Trop Ecol 9:231–240

    Article  Google Scholar 

  • Miyazaki Local Meteorological Observatory (eds) (1951–1997) Monthly report of meteorology. Japan Weather Association Miyazaki Branch, Miyazaki (in Japanese)

  • Nieder J, Engwald S, Klawun M, Barthlott W (2000) Spatial distribution of vascular epiphytes (including Hemiepiphytes) in a lowland amazonian rain forest (Surumoni Crane Plot) of southern Venezuela. Biotropica 32:385–396

    Google Scholar 

  • Ohnuki Y, Terazono R, Ikuzawa H, Hirata I, Kanna K, Utagawa H (1997) Distribution of colluvia and saprolites and their physical properties in a zero-order basin in Okinawa, southwestern Japan. Geoderma 80:75–93. doi:10.1016/S0016-7061(97)00076-1

    Article  CAS  Google Scholar 

  • R Development Core Team (2006) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna

    Google Scholar 

  • Saito S (2002) Effects of a severe typhoon on forest dynamics in a warm-temperate evergreen broad-leaved forest in Southwestern Japan. J For Res 7:137–143. doi:10.1007/BF02762602

    Article  Google Scholar 

  • Sato T, Kominami Y, Saito S, Niiyama K, Manabe T, Tanouchi H, Noma N, Yamamoto S (1999) An introduction to the Aya Research Site, a long-term ecological research site, in a warm temperate evergreen broad-leaved forest ecosystem in southwestern Japan: research topics and design. Bull Kitakyushu Mus Nat Hist 18:157–180

    Google Scholar 

  • Schmidt G, Zotz G (2002) Inherently slow growth in two Caribbean epiphytic species: a demographic approach. J Veg Sci 13:527–534. doi:10.1658/1100-9233(2002)013[0527:ISGITC]2.0.CO;2

    Article  Google Scholar 

  • Tamura T (1987) Landform-soil features of the humid temperate hills. Pedologist 31:135–146 in Japanese

    Google Scholar 

  • Tamura T, Takeuchi K (1980) Land characteristics of the hills and their modification by man—with special reference to a few cases in the Tama hills, west of Tokyo. Geogr Rep Tokyo Metropol Univ 14/15:49–94

    Google Scholar 

  • Tanouchi H, Yamamoto S (1995) Structure and regeneration of canopy species in an old-growth evergreen broad-leaved forest in Aya district, southwestern Japan. Vegetatio 117:51–60. doi:10.1007/BF00033258

    Article  Google Scholar 

  • Tremblay RL (1997) Distribution and dispersion patterns of individuals in nine species of Lepanthes (Orchidaceae). Biotropica 29:38–45. doi:10.1111/j.1744-7429.1997.tb00004.x

    Article  Google Scholar 

  • Winter K, Wallace BJ, Stocker GC, Roksandic Z (1983) Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia 57:129–141. doi:10.1007/BF00379570

    Article  Google Scholar 

  • Zimmerman JK, Olmsted IC (1992) Host tree utilization by vascular epiphytes in a seasonally inundated forest (Tintal) in Mexico. Biotropica 24:402–407. doi:10.2307/2388610

    Article  Google Scholar 

  • Zotz G, Vollrath B (2003) The epiphyte vegetation of the palm Socratea exorrhiza—correlations with tree size, tree age and bryophyte cover. J Trop Ecol 19:81–90. doi:10.1017/S0266467403003092

    Article  Google Scholar 

  • Zotz G, Ziegler H (1997) The occurrence of crassulacean acid metabolism among vascular epiphytes from Central Panama. New Phytol 137:223–229. doi:10.1046/j.1469-8137.1997.00800.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank H. Nomiya, K. Kawano, N. Kawano, Y. Cheng, M. Kawagoe, and K. Hashiba for their support and helpful suggestions for our study. We also thank the Miyazaki District Forestry Office for allowing the use of their facilities for our study. For analysis, we used some data of Forest Dynamics Data Base (FDDB) established by FFPRI (Forestry and Forest Products Research Institute) and JST (Japan Science and Technology Agency).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiko Hirata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirata, A., Kamijo, T. & Saito, S. Host trait preferences and distribution of vascular epiphytes in a warm-temperate forest. Plant Ecol 201, 247–254 (2009). https://doi.org/10.1007/s11258-008-9519-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-008-9519-6

Keywords

Navigation