Skip to main content
Log in

User-adaptive models for activity and emotion recognition using deep transfer learning and data augmentation

  • Published:
User Modeling and User-Adapted Interaction Aims and scope Submit manuscript

Abstract

Building predictive models for human-interactive systems is a challenging task. Every individual has unique characteristics and behaviors. A generic human–machine system will not perform equally well for each user given the between-user differences. Alternatively, a system built specifically for each particular user will perform closer to the optimum. However, such a system would require more training data for every specific user, thus hindering its applicability for real-world scenarios. Collecting training data can be time consuming and expensive. For example, in clinical applications it can take weeks or months until enough data is collected to start training machine learning models. End users expect to start receiving quality feedback from a given system as soon as possible without having to rely on time consuming calibration and training procedures. In this work, we build and test user-adaptive models (UAM) which are predictive models that adapt to each users’ characteristics and behaviors with reduced training data. Our UAM are trained using deep transfer learning and data augmentation and were tested on two public datasets. The first one is an activity recognition dataset from accelerometer data. The second one is an emotion recognition dataset from speech recordings. Our results show that the UAM have a significant increase in recognition performance with reduced training data with respect to a general model. Furthermore, we show that individual characteristics such as gender can influence the models’ performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdallah, Z., Gaber, M., Srinivasan, B., Krishnaswamy, S.: StreamAR: incremental and active learning with evolving sensory data for activity recognition. In: Tools with Artificial Intelligence (ICTAI), 2012 IEEE 24th International Conference on, vol. 1, pp. 1163–1170 (2012). https://doi.org/10.1109/ICTAI.2012.169

  • Alnujaim, I., Alali, H., Khan, F., Kim, Y.: Hand gesture recognition using input impedance variation of two antennas with transfer learning. IEEE Sens. J. 18(10), 4129–4135 (2018). https://doi.org/10.1109/JSEN.2018.2820000

    Article  Google Scholar 

  • Avci, A., Bosch, S., Marin-Perianu, M., Marin-Perianu, R., Havinga, P.: Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: a survey. In: Architecture of Computing Systems (ARCS), 2010 23rd International Conference on, pp. 1–10 (2010)

  • Aviezer, H., Hassin, R.R., Ryan, J., Grady, C., Susskind, J., Anderson, A., Moscovitch, M., Bentin, S.: Angry, disgusted, or afraid? Studies on the malleability of emotion perception. Psychol. Sci. 19(7), 724–732 (2008)

    Article  Google Scholar 

  • Ayadi, M.E., Kamel, M.S., Karray, F.: Survey on speech emotion recognition: features, classification schemes, and databases. Pattern Recogn. 44(3), 572–587 (2011). https://doi.org/10.1016/j.patcog.2010.09.020

    Article  MATH  Google Scholar 

  • Badshah, A.M., Ahmad, J., Rahim, N., Baik, S.W.: Speech emotion recognition from spectrograms with deep convolutional neural network. In: 2017 International Conference on Platform Technology and Service (PlatCon), pp. 1–5 (2017). https://doi.org/10.1109/PlatCon.2017.7883728

  • Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36 (2012)

  • Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pp. 440–447 (2007)

  • Brezmes, T., Gorricho, J.L., Cotrina, J.: Activity recognition from accelerometer data on a mobile phone. In: Omatu, S., Rocha, M., Bravo, J., Fernndez, F., Corchado, E., Bustillo, A., Corchado, J. (eds.) Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living, Lecture Notes in Computer Science, vol. 5518, pp. 796–799. Springer, Berlin (2009)

    Google Scholar 

  • Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W.F., Weiss, B.: A database of German emotional speech. In: Ninth European Conference on Speech Communication and Technology (2005)

  • Chapelle, O., Schölkopf, B., Zien, A.: Others Semi-Supervised Learning. MIT Press, Cambridge (2006)

    Book  Google Scholar 

  • Chatterjee, J., Mukesh, V., Hsu, H., Vyas, G., Liu, Z.: Speech emotion recognition using cross-correlation and acoustic features. In: 2018 IEEE 16th International Conference on Dependable, Autonomic and Secure Computing, 16th International Conference on Pervasive Intelligence and Computing, 4th International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 243–249 (2018)

  • Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  • Devin, C., Gupta, A., Darrell, T., Abbeel, P., Levine, S.: Learning modular neural network policies for multi-task and multi-robot transfer. In: Robotics and Automation (ICRA), 2017 IEEE International Conference on, pp. 2169–2176. IEEE (2017)

  • EmotionDB.: Berlin Database of Emotional Speech. http://emodb.bilderbar.info/docu/ (1999). Accessed 28 Jan 2018

  • Fallahzadeh, R., Ghasemzadeh, H.: Personalization without user interruption: boosting activity recognition in new subjects using unlabeled data. In: Proceedings of the 8th International Conference on Cyber-Physical Systems, pp. 293–302. ACM (2017)

  • Gama, J., liobait, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Sur. (CSUR) 46(4), 44 (2014d)

    MATH  Google Scholar 

  • Garcia-Ceja, E., Brena, R.: Building personalized activity recognition models with scarce labeled data based on class similarities. In: García-Chamizo, J.M., Fortino, G., Ochoa, S.F. (eds.) Ubiquitous Computing and Ambient Intelligence. Sensing, Processing, and Using Environmental Information, pp. 265–276. Springer, Cham (2015)

    Chapter  Google Scholar 

  • Garcia-Ceja, E., Brena, R.F.: Activity recognition using community data to complement small amounts of labeled instances. Sensors 16(6), 877 (2016). https://doi.org/10.3390/s16060877

    Article  Google Scholar 

  • Garcia-Ceja, E., Osmani, V., Mayora, O.: Automatic stress detection in working environments from smartphones’ accelerometer data: a first step. IEEE J. Biomed. Health Inf. 20(4), 1053–1060 (2016). https://doi.org/10.1109/JBHI.2015.2446195

    Article  Google Scholar 

  • Garcia-Ceja, E., Riegler, M., Nordgreen, T., Jakobsen, P., Oedegaard, K.J., Trresen, J.: Mental health monitoring with multimodal sensing and machine learning: a survey. Pervasive Mobile Comput. 51, 1–26 (2018). https://doi.org/10.1016/j.pmcj.2018.09.003

    Article  Google Scholar 

  • Giannakopoulos, T.: Pyaudioanalysis: an open-source python library for audio signal analysis. PLoS ONE 10(12), 1–17 (2015). https://doi.org/10.1371/journal.pone.0144610

    Article  Google Scholar 

  • Giannakopoulos, T.: Python audio analysis library. https://github.com/tyiannak/pyAudioAnalysis (2016). Accessed 28 Jan 2018

  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

  • Grünerbl, A., Muaremi, A., Osmani, V., Bahle, G., Öhler, S., Trster, G., Mayora, O., Haring, C., Lukowicz, P.: Smartphone-based recognition of states and state changes in bipolar disorder patients. IEEE J. Biomed. Health Inf. 19(1), 140–148 (2015). https://doi.org/10.1109/JBHI.2014.2343154

    Article  Google Scholar 

  • Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, Englewood Cliffs (1994)

    MATH  Google Scholar 

  • Hutcherson, C.A., Gross, J.J.: The moral emotions: a social-functionalist account of anger, disgust, and contempt. J. Personal. Soc. Psychol. 100(4), 719 (2011)

    Article  Google Scholar 

  • Karam, Z.N., Provost, E.M., Singh, S., Montgomery, J., Archer, C., Harrington, G., Mcinnis, M.G.: Ecologically valid long-term mood monitoring of individuals with bipolar disorder using speech. In: Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, pp. 4858–4862. IEEE (2014)

  • Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR arXiv:1412.6980 (2014)

  • Kotsiantis, S., Kanellopoulos, D., Pintelas, P.: Handling imbalanced datasets: a review. GESTS Int. Trans. Comput. Sci. Eng. 30(1), 25–36 (2006)

    Google Scholar 

  • Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. SIGKDD Explor. Newsl. 12(2), 74–82 (2011). https://doi.org/10.1145/1964897.1964918

    Article  Google Scholar 

  • Lalitha, S., Madhavan, A., Bhushan, B., Saketh, S.: Speech emotion recognition. In: Advances in Electronics, Computers and Communications (ICAECC), 2014 International Conference on, pp. 1–4. IEEE (2014)

  • Lane, N.D., Xu, Y., Lu, H., Hu, S., Choudhury, T., Campbell, A.T., Zhao, F.: Enabling large-scale human activity inference on smartphones using community similarity networks (CSN). In: Proceedings of the 13th International Conference on Ubiquitous Computing, UbiComp ’11, pp. 355–364. ACM, New York (2011). https://doi.org/10.1145/2030112.2030160

  • LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  • Lin, Y.L., Wei, G.: Speech emotion recognition based on HMM and SVM. In: 2005 International Conference on Machine Learning and Cybernetics, vol. 8, pp. 4898–4901 (2005). https://doi.org/10.1109/ICMLC.2005.1527805

  • Lockhart, J.W., Weiss, G.M.: The benefits of personalized smartphone-based activity recognition models. In: Proceedings of the 2014 SIAM International Conference on Data Mining, pp. 614–622 (2014). https://doi.org/10.1137/1.9781611973440.71

  • López-Nava, I., Muñoz-Meléndez, A.: High-level features for recognizing human actions in daily living environments using wearable sensors. In: Multidisciplinary Digital Publishing Institute Proceedings, vol. 2, p. 1238 (2018)

  • Lu, H., Frauendorfer, D., Rabbi, M., Mast, M.S., Chittaranjan, G.T., Campbell, A.T., Gatica-Perez, D., Choudhury, T.: StressSense: detecting stress in unconstrained acoustic environments using smartphones. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, UbiComp ’12, pp. 351–360. ACM (2012). https://doi.org/10.1145/2370216.2370270

  • Mannini, A., Sabatini, A.M.: Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 10(2), 1154–1175 (2010). https://doi.org/10.3390/s100201154

    Article  Google Scholar 

  • Martínez-Pérez, F.E., González-Fraga, J.A., Cuevas-Tello, J.C., Rodríguez, M.D.: Activity inference for ambient intelligence through handling artifacts in a healthcare environment. Sensors 12(1), 1072–1099 (2012). https://doi.org/10.3390/s120101072

    Article  Google Scholar 

  • Maxhuni, A., Hernandez-Leal, P., Sucar, L.E., Osmani, V., Morales, E.F., Mayora, O.: Stress modelling and prediction in presence of scarce data. J. Biomed. Inf. 63, 344–356 (2016). https://doi.org/10.1016/j.jbi.2016.08.023

    Article  Google Scholar 

  • Mitchell, E., Monaghan, D., O’Connor, N.E.: Classification of sporting activities using smartphone accelerometers. Sensors 13(4), 5317–5337 (2013)

    Article  Google Scholar 

  • Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  • Parviainen, J., Bojja, J., Collin, J., Leppnen, J., Eronen, A.: Adaptive activity and environment recognition for mobile phones. Sensors 14(11), 20753–20778 (2014). https://doi.org/10.3390/s141120753

    Article  Google Scholar 

  • Peng, P., Tian, Y., Xiang, T., Wang, Y., Pontil, M., Huang, T.: Joint semantic and latent attribute modelling for cross-class transfer learning. IEEE Trans. Pattern Anal. Mach. Intell. 40, 1625–1638 (2017)

    Article  Google Scholar 

  • Richter, J., Wiede, C., Dayangac, E., Shahenshah, A., Hirtz, G.: Activity recognition for elderly care by evaluating proximity to objects and human skeleton data. In: Fred, A., De Marsico, M., Sanniti di Baja, G. (eds.) International Conference on Pattern Recognition Applications and Methods, pp. 139–155. Springer, Berlin (2016)

  • Rokni, S.A., Nourollahi, M., Ghasemzadeh, H.: Personalized human activity recognition using convolutional neural networks. CoRR arXiv:1801.08252 (2018)

  • Sanchez, W., Martinez, A., Campos, W., Estrada, H., Pelechano, V.: Inferring loneliness levels in older adults from smartphones. J. Ambient Intell. Smart Environ. 7(1), 85–98 (2015)

    Article  Google Scholar 

  • Scudder, I.H.: Probability of error of some adaptive pattern-recognition machines. IEEE Trans. Inf. Theory 11(3), 363–371 (1965). https://doi.org/10.1109/TIT.1965.1053799

    Article  MathSciNet  MATH  Google Scholar 

  • Sevakula, R.K., Singh, V., Verma, N.K., Kumar, C., Cui, Y.: Transfer learning for molecular cancer classification using deep neural networks. IEEE/ACM Trans. Comput. Biol. Bioinf. (2018). https://doi.org/10.1109/TCBB.2018.2822803

    Article  Google Scholar 

  • Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. imaging 35(5), 1285–1298 (2016)

    Article  Google Scholar 

  • Shoaib, M., Bosch, S., Incel, O.D., Scholten, H., Havinga, P.J.M.: Fusion of smartphone motion sensors for physical activity recognition. Sensors 14(6), 10146–10176 (2014). https://doi.org/10.3390/s140610146

    Article  Google Scholar 

  • Soleymani, M., Riegler, M., Halvorsen, P.: Multimodal analysis of user behavior and browsed content under different image search intents. Int. J. Multimed. Inf. Retr. 7(1), 29–41 (2018)

    Article  Google Scholar 

  • Tarnowski, P., Koodziej, M., Majkowski, A., Rak, R.J.: Emotion recognition using facial expressions. Proc. Comput. Sci. 108, 1175–1184 (2017). https://doi.org/10.1016/j.procs.2017.05.025

    Article  Google Scholar 

  • Vildjiounaite, E., Kallio, J., Mntyjrvi, J., Kyllnen, V., Lindholm, M., Gimel’farb, G.: Unsupervised stress detection algorithm and experiments with real life data. In: Oliveira, E., Gama, J., Vale, Z., Lopes Cardoso, H. (eds.) Progress in Artificial Intelligence, pp. 95–107. Springer, Berlin (2017)

    Chapter  Google Scholar 

  • Vo, Q.V., Hoang, M.T., Choi, D.: Personalization in mobile activity recognition system using k-medoids clustering algorithm. Int. J. Distrib. Sens. Netw. 9(7), 315841 (2013)

    Article  Google Scholar 

  • Wang, X., Rosenblum, D., Wang, Y.: Context-aware mobile music recommendation for daily activities. In: Proceedings of the 20th ACM international conference on Multimedia, pp. 99–108. ACM (2012)

  • Wisdm: Activity prediction dataset. http://www.cis.fordham.edu/wisdm/dataset.php (2012). Accessed 28 Jan 2018

  • Xu, Q., Nwe, T.L., Guan, C.: Cluster-based analysis for personalized stress evaluation using physiological signals. IEEE J. Biomed. Health Inf. 19(1), 275–281 (2015). https://doi.org/10.1109/JBHI.2014.2311044

    Article  Google Scholar 

  • Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised methods. In: Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics, Association for Computational Linguistics, pp. 189–196 (1995)

  • Zenonos, A., Khan, A., Kalogridis, G., Vatsikas, S., Lewis, T., Sooriyabandara, M.: HealthyOffice: mood recognition at work using smartphones and wearable sensors. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6 (2016). https://doi.org/10.1109/PERCOMW.2016.7457166

Download references

Acknowledgements

This publication is part of the INTROducing Mental health through Adaptive Technology (INTROMAT) project, funded by the Norwegian Research Council (259293/o70) and as a part of the RCN Centres of Excellence scheme (Project No. 262762).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Garcia-Ceja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Figs. 1415 and 16.

Fig. 14
figure 14

Activity dataset accuracy with 10–40% adaptation data. The UAM performs better compared to the other models

Fig. 15
figure 15

Speech emotion dataset accuracy with 10–40% adaptation data. The UAM outperforms the other approaches

Fig. 16
figure 16

Speech emotion dataset boxplots accuracy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Ceja, E., Riegler, M., Kvernberg, A.K. et al. User-adaptive models for activity and emotion recognition using deep transfer learning and data augmentation. User Model User-Adap Inter 30, 365–393 (2020). https://doi.org/10.1007/s11257-019-09248-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11257-019-09248-1

Keywords

Navigation