Skip to main content

Advertisement

Log in

Association of serum total testosterone concentration with skeletal muscle mass in men under hemodialysis

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Although skeletal muscle wasting can occur in chronic kidney diseases, its relationship with the serum testosterone concentration remains uncertain. This study investigates the relationship between serum testosterone and skeletal muscle mass in men under hemodialysis (HD).

Methods

Sixty men aged between 41 and 89 years undergoing HD for 15.0 ± 8.1 years were enrolled for this study. The muscle areas of the thigh (TMA) and abdomen (AMA) were measured by computed tomography (CT), and the association between these muscle areas and serum total testosterone was examined with adjustment of age and other nutritional variables.

Results

The mean serum total testosterone in our HD patients (6.33 ± 2.90 ng/mL) was not lower than that of the Japanese general population, but showed a positive correlation with TMA (r = 0.39, p < 0.05), AMA (r = 0.52, p < 0.001), serum creatinine (r = 0.33, p < 0.05), and the creatinine generation rate (r = 0.26, p < 0.05). Serum total testosterone was inversely correlated with age (r = −0.32, p < 0.05), CRP (r = −0.31, p < 0.05), and IL-6 (r = −0.24, p < 0.05). A multiple-regression analysis showed both serum total testosterone and age to be an independent determinant of the muscle mass in these patients.

Conclusions

This study identified testosterone as a determinant of muscle mass in HD men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Toledo FR, Antunes AA, Vannini FC, Silveira LV, Martin LC, Barretti P, Caramori JC (2013) Validity of malnutrition scores for predicting mortality in chronic hemodialysis patients. Int Urol Nephrol doi:10.1007/s11255-013-0482-3

  2. Lukowsky LR, Kheifets L, Arah OA, Nissenson AR, Kalantar-Zadeh K (2013) Nutritional predictors of early mortality in incident hemodialysis patients. Int Urol Nephrol doi:10.1007/s11255-013-0459-2

  3. Park J, Jin DC, Molnar MZ et al (2013) Mortality predictability of body size and muscle mass surrogates in Asian vs white and African American hemodialysis patients. Mayo Clin Proc 88:479–486

    Article  PubMed Central  PubMed  Google Scholar 

  4. Johansen KL, Shubert T, Doyle J, Soher B, Sakkas GK, Kent-Braun JA (2003) Muscle atrophy in patients receiving hemodialysis: effects on muscle strength, muscle quality, and physical function. Kidney Int 63:291–297

    Article  PubMed  Google Scholar 

  5. Fouque D, Kalantar-Zadeh K, Kopple J et al (2008) A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int 73:391–398

    Article  CAS  PubMed  Google Scholar 

  6. Workeneh BT, Mitch WE (2010) Review of muscle wasting associated with chronic kidney disease. Am J Clin Nutr 91:1128S–1132S

    Article  CAS  PubMed  Google Scholar 

  7. Herbst KL, Bhasin S (2004) Testosterone action on skeletal muscle. Curr Opin Clin Nutr Metab Care 7:271–277

    Article  CAS  PubMed  Google Scholar 

  8. Kaufman JM, Vermeulen A (2005) The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr Rev 26:833–876

    Article  CAS  PubMed  Google Scholar 

  9. Maggi M, Schulman C, Quinton R, Langham S, Uhl-Hochgraeber K (2007) The burden of testosterone deficiency syndrome in adult men: economic and quality-of-life impact. J Sex Med 4:1056–1069

    Article  PubMed  Google Scholar 

  10. Iglesias P, Carrero JJ, Díez JJ (2012) Gonadal dysfunction in men with chronic kidney disease: clinical features, prognostic implications and therapeutic options. J Nephrol 25:31–42

    Article  CAS  PubMed  Google Scholar 

  11. Carrero JJ, Qureshi AR, Parini P et al (2009) Low serum testosterone increases mortality risk among male dialysis patients. J Am Soc Nephrol 20:613–620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Gungor O, Kircelli F, Carrero JJ et al (2010) Endogenous testosterone and mortality in male hemodialysis patients: is it the result of aging? Clin J Am Soc Nephrol 5:2018–2023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Carrero JJ, Qureshi AR, Nakashima A et al (2011) Prevalence and clinical implications of testosterone deficiency in men with end-stage renal disease. Nephrol Dial Transplant 26:184–190

    Article  CAS  PubMed  Google Scholar 

  14. Depner TA, Daugirdas JT (1996) Equations for normalized protein catabolic rate based on two-point modeling of hemodialysis urea kinetics. J Am Soc Nephrol 7:780–785

    CAS  PubMed  Google Scholar 

  15. Shinzato T, Nakai S, Miwa M et al (1997) New method to calculate creatinine generation rate using pre- and post dialysis creatinine concentrations. Artif Organs 21:864–872

    Article  CAS  PubMed  Google Scholar 

  16. Okamura K, Ando F, Shimokata H (2005) Serum total and free testosterone level of Japanese men: a population-based study. Int J Urol 12:810–814

    Article  CAS  PubMed  Google Scholar 

  17. Ohkawa S, Odamaki M, Yoneyama T, Hibi I, Miyaji K, Kumagai H (2000) Standardized thigh muscle area measured by computed axial tomography as an alternate muscle mass index for nutritional assessment of hemodialysis patients. Am J Clin Nutr 71:485–490

    CAS  PubMed  Google Scholar 

  18. Baumgartner RN, Waters DL, Gallagher D, Morley JE, Garry PJ (1999) Predictors of skeletal muscle mass in elderly men and women. Mech Ageing Dev 107:123–136

    Article  CAS  PubMed  Google Scholar 

  19. Roy TA, Blackman MR, Harman SM, Tobin JD, Schrager M, Metter EJ (2002) Interrelationships of serum testosterone and free testosterone index with FFM and strength in aging men. Am J Physiol Endocrinol Metab 283:E284–E294

    CAS  PubMed  Google Scholar 

  20. Szulc P, Claustrat B, Marchand F, Delmas PD (2003) Increased risk of falls and increased bone resorption in elderly men with partial androgen deficiency: the MINOS study. J Clin Endocrinol Metab 88:5240–5247

    Article  CAS  PubMed  Google Scholar 

  21. Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR (2001) Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore longitudinal study of aging. J Clin Endocrinol Metab 86:724–731

    Article  CAS  PubMed  Google Scholar 

  22. Kaizu Y, Ohkawa S, Odamaki M, Ikegaya N, Hibi I, Miyaji K, Kumagai H (2003) Association between inflammatory mediators and muscle mass in long-term hemodialysis patients. Am J Kidney Dis 42:295–302

    Article  CAS  PubMed  Google Scholar 

  23. D’Agostino P, Milano S, Barbera C et al (1999) Sex hormones modulate inflammatory mediators produced by macrophages. Ann N Y Acad Sci 876:426–429

    Article  PubMed  Google Scholar 

  24. Li ZG, Danis VA, Brooks PM (1993) Effect of gonadal steroids on the production of IL-1 and IL-6 by blood mononuclear cells in vitro. Clin Exp Rheumatol 11:157–162

    CAS  PubMed  Google Scholar 

  25. Cutolo M, Wilder RL (2000) Different roles for androgens and estrogens in the susceptibility to autoimmune rheumatic diseases. Rheum Dis Clin North Am 26:825–839

    Article  CAS  PubMed  Google Scholar 

  26. Malkin CJ, Pugh PJ, Jones RD, Kapoor D, Channer KS, Jones TH (2004) The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. J Clin Endocrinol Metab 89:3313–3318

    Article  CAS  PubMed  Google Scholar 

  27. Danesh J, Whincup P, Walker M et al (2000) Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses. BMJ 321:199–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Schiffrin EL, Lipman ML, Mann JF (2007) Chronic kidney disease: effects on the cardiovascular system. Circulation 116:85–97

    Article  PubMed  Google Scholar 

  29. Recio-Mayoral A, Banerjee D, Streather C, Kaski JC (2011) Endothelial dysfunction, inflammation and atherosclerosis in chronic kidney disease—a cross-sectional study of predialysis, dialysis and kidney-transplantation patients. Atherosclerosis 216:46–51

    Article  Google Scholar 

  30. Corona G, Rastrelli G, Monami M et al (2011) Hypogonadism as a risk factor for cardiovascular mortality in men: a meta-analytic study. Eur J Endocrinol 165:687–701

    Article  CAS  PubMed  Google Scholar 

  31. Ruige JB, Mahmoud AM, De Bacquer D, Kaufman JM (2011) Endogenous testosterone and cardiovascular disease in healthy men: a meta-analysis. Heart 97:870–875

    Article  CAS  PubMed  Google Scholar 

  32. Liao CH, Li HY, Yu HJ, Chiang HS, Lin MS, Hua CH, Ma WY (2012) Low serum sex hormone-binding globulin: marker of inflammation? Clin Chim Acta 413:803–807

    Article  CAS  PubMed  Google Scholar 

  33. Kyriazis J, Tzanakis I, Stylianou K et al (2011) Low serum testosterone, arterial stiffness and mortality in male haemodialysis patients. Nephrol Dial Transplant 26:2971–2977

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported by a grant from Global Center of Excellence Program of Japanese Ministry of Education, Culture, Sports, Science, and Technology.

Conflict of interest

We have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromichi Kumagai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kojo, G., Yoshida, T., Ohkawa, S. et al. Association of serum total testosterone concentration with skeletal muscle mass in men under hemodialysis. Int Urol Nephrol 46, 985–991 (2014). https://doi.org/10.1007/s11255-013-0543-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-013-0543-7

Keywords

Navigation