Skip to main content

Advertisement

Log in

Urban structure and environment impact plant species richness and floristic composition in a Central European city

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Cities represent enviroment for most of Europe's human population. Spatial pattern of cities' environmental as well as socioeconomic features affect plant biodiversity. We analysed a floristic mapping dataset of the city of Ljubljana (Slovenia) and asked what affects the spatial differences in the presence of different categories of species: species according to residence time and endangered and thermophilic species. To explain the proportions of these species groups in grid cells, using Generalized Additive Models, we tested the effects of three categories of predictors: i) urban structure, represented by the distance from the city centre, population density, soil sealing, and quality of residential environment index, ii) habitat predictors, represented by habitat diversity and geologic diversity, and iii) environmental conditions, represented by urban heat island (UHI). Species richness decreases with the distance from the city centre and is highest in the cells with intermediate habitat diversity. Number of species is highest within city parts of highest quality of residential environment index and lowest in parts with UHI effect. Proportion of native species is positively related to habitat and geologic diversity. The proportion of archaeophytes is higher where habitats are more diverse and increases with the distance from the city centre. Grid cells with highest proportion of neophytes are located in the most built-up areas and in the city centre, which is positively associated with soil sealing, but negatively with UHI. Thermophilic species are positively associated with soil sealing. Endangered species have uniform distribution pattern and their proportion is negatively associated with distance from the city centre and soil sealing. A grid cell with the highest proportion of endangered species includes two protected areas with wetland habitats. Calculated ecological indicator values show correlation with soil sealing and habitat diversity. Some of the results are in line with well-established patterns from other cities, while others reflect certain specific features of Ljubljana, e.g. forested hills close to the city centre. The identified hotspots of city's plant species richness can serve in the argumentation of future urbanistic planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams LW (1994) Urban Wildlife Habitats: A Landscape Perspective. University of Minnesota Press, Mineapolis, MN

    Google Scholar 

  • Ajaaj AA, Mishra AK, Khan AA (2018) Urban and peri-urban precipitation and air temperature trends in mega cities of the world using multiple trend analysis methods. Theor Appl Climatol 132:403–418. https://doi.org/10.1007/s00704-017-2096-7

    Article  Google Scholar 

  • Altobelli A, Bressan E, Feoli E, Ganis P, Martini F (2007) Improving knowledge of urban vegetation by applying GIS technology to existing databases. Appl Veg Sci 10:203–210

    Google Scholar 

  • Anonymous (2002) Pravilnik o uvrstitvi ogroženih rastlinskih in živalskih vrst v rdeči seznam Uradni list RS

  • Anonymous (2004–2014) Uredba o zavarovanih prosto živečih rastlinskih vrstah Uradni list RS 46/04, 110/04, 115/07, 36/09 & 15/14:5933–5962

  • Aronson MF, Nilon CH, Lepczyk CA, Parker TS, Warren PS, Cilliers SS, Goddard MA, Hahs AK, Herzog C, Katti M (2016) Hierarchical filters determine community assembly of urban species pools. Ecology 97:2952–2963. https://doi.org/10.1002/ecy.1535

    Article  PubMed  Google Scholar 

  • Aronson MFJ, Handel SN, La Puma IP, Clemants SE (2015) Urbanization promotes non-native woody species and diverse plant assemblages in the New York metropolitan region. Urban Ecosys 18:31–45. https://doi.org/10.1007/s11252-014-0382-z

    Article  Google Scholar 

  • ARSO (2018) meteo.si. http://meteo.arso.gov.si/uploads/probase/www/climate/table/sl/by_location/ljubljana/climate-normals_81-10_Ljubljana.pdf

  • Bechtel B, Schmidt KJ (2011) Floristic mapping data as a proxy for the mean urban heat island. Climate Res 49:45–58

    Article  Google Scholar 

  • Bornstein R, Lin Q (2000) Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies. Atmos Environ 34:507–516. https://doi.org/10.1016/S1352-2310(99)00374-X

    Article  CAS  Google Scholar 

  • Brunzel S, Fischer SF, Schneider J, Jetzkowitz J, Brandl R (2009) Neo- and archaeophytes respond more strongly than natives to socio-economic mobility and disturbance patterns along an urban–rural gradient. J Biogeogr 36:835–844. https://doi.org/10.1111/j.1365-2699.2008.02044.x

  • Celesti-Grapow L (1995) Atlas of the flora of Rome. Comune di Roma, Rome

    Google Scholar 

  • Celesti-Grapow L, Pysek P, Jarosik V, Blasi C (2006) Determinants of native and alien species richness in the urban flora of Rome. Divers Distrib 12:490–501. https://doi.org/10.1111/j.1366-9516.2006.00282.x

    Article  Google Scholar 

  • Čeplova N, Kalusova V, Lososova Z (2017a) Effects of settlement size, urban heat island and habitat type on urban plant biodiversity. Landsc Urban Plan 159:15–22. https://doi.org/10.1016/j.landurbplan.2016.11.004

  • Čeplova N, Lososova Z, Kalusova V (2017b) Urban ornamental trees: a source of current invaders; a case study from a European City. Urban Ecosys 20:1135–1140. https://doi.org/10.1007/s11252-017-0665-2

  • Chytrý M, Maskell LC, Pino J, Pyšek P, Vilà M, Font X, Smart SM (2008) Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J Appl Ecol 45:448–458. https://doi.org/10.1111/j.1365-2664.2007.01398.x

  • City of Ljubljana (2018) https://www.ljubljana.si/en/about-ljubljana/ljubljana-in-figures/

  • Diekmann M (2003) Species indicator values as an important tool in applied plant ecology - a review. Basic Appl Ecol 4:493–506

    Article  Google Scholar 

  • EEA (2012) Mapping guide for a European Urban Atlas. European Environment Agency, Copenhagen

    Google Scholar 

  • EEA (2018) Copernicus Land Monitoring Service –High Resolution Layer Imperviousness: Product Specifications Document. Copernicus team at EEA

  • Endlicher W (2012) Einführung in die Stadtökologie. Verlag Eugen Ulmer, Stuttgart

    Book  Google Scholar 

  • ESRI (2015) ArcGIS 10.4. Environmental Systems Research Institute Inc., Redlands, CA, USA

  • Essl F, Bacher S, Genovesi P, Hulme PE, Jeschke JM, Katsanevakis S, Kowarik I, Kühn I, Pyšek P, Rabitsch W (2018) Which taxa are alien? Criteria, applications, and uncertainties. BioScience 68: 496–509.

  • Ewald J (2003) The sensitivity of Ellenberg indicator values to the completeness of vegetation relevés. Basic Appl Ecol 4:507–513

    Article  Google Scholar 

  • Ferle M (2018) Zgodovina Ljubljane: od kolišč do zelene prestolnice. Mestni Muzej Ljubljana, Ljubljana

  • Forman RTT (2014) Urban Ecology: Science of Cities. Cambridge University Press, Cambridge

    Google Scholar 

  • Geološki zavod Slovenije (2000) Osnovna Geološka karta. Geološki zavod Slovenije, Ljubljana

  • Gilbert OL (1989) The Ecology of Urban Habitats. Chapman and Hall, London

    Book  Google Scholar 

  • Godefroid S (2001) Temporal Analysis of the Brussels Flora as Indicator for Changing Environmental Quality. Landsc Urban Plan 52:203–224

    Google Scholar 

  • Godefroid S, Koedam N (2007) Urban plant species patterns are highly driven by density and function of built-up areas. Landsc Ecol 22:1227–1239

    Article  Google Scholar 

  • Gregor T, Bönsel D, Starke-Ottich I, Zizka G (2012) Drivers of floristic change in large cities – A case study of Frankfurt/Main (Germany). Landsc Urban Plan 104:230–237. https://doi.org/10.1016/j.landurbplan.2011.10.015

  • Hladnik D, Pirnat J (2011) Urban forestry—Linking naturalness and amenity: The case of Ljubljana, Slovenia. Urban For Urban Gree 10:105–112. https://doi.org/10.1016/j.ufug.2011.02.002

    Article  Google Scholar 

  • Hough M (1989) City form and natural process. Routledge, London, New York

    Google Scholar 

  • James P (2010) Urban Flora: Historic, Contemporary and Future Trends. In: N. Müller PWaJGK (ed) Urban Biodiversity and Design. Wiley-Blackwell, Oxford, pp 177–190. https://doi.org/10.1002/9781444318654.ch8

  • Jernej S (2000) Mestna klima. In: Gabrovec M, Orožen Adamič M (eds) Ljubljana: geografija mesta. Založba ZRC SAZU, Ljubljana, pp 117–130

  • Jernej S, Ramšak Ž (2000) Klimatopska členitev Ljubljane

  • Jogan N, Bačič M, Strgulc Krajšek S (2012) Tujerodne in invazivne rastline v Sloveniji. In: Jogan N, Bačič M, Strgulc Krajšek S (eds) Neobiota Slovenije, končno poročilo projekta. Oddelek za biologijo BF UL, Ljubljana, pp 161–182

  • Jogan N, Strgulc Krajšek S, Bačič T (2015) Popis flore znotraj obvoznice mesta Ljubljana s poudarkom na tujerodnih invazivnih rastlinskih vrstah. Biotechnical faculty, University of Ljubljana, Ljubljana, Končno poročilo o izvedbi projektne naloge

    Google Scholar 

  • Kantsa A, Tscheulin T, Junker RR, Petanidou T, Kokkini S (2013) Urban biodiversity hotspots wait to get discovered: The example of the city of Ioannina, NW Greece. Landsc Urban Plan 120:129–137

    Article  Google Scholar 

  • Knapp S et al (2009) How species traits and affinity to urban land use control large-scale species frequency. Divers Distrib 15:533–546

    Google Scholar 

  • Komac B et al. (2016) Urban Heat Island in the Ljubljana City. In: Musco F (ed) Counteracting Urban Heat Island Effects in a Global Climate Change Scenario. Springer International Publishing, Cham, pp 323–344. https://doi.org/10.1007/978-3-319-10425-6_12

  • Kowarik I (1992) Das Besondere der städtischen Flora und Vegetation. Natur in Der Stadt-Der Beitrag Der Landespflege Zur Stadtentwicklung. Schriftenreihe Des Deutschen Rates Für Landespflege 61:33–47

    Google Scholar 

  • Kowarik I (2010) Biologische invasionen: neophyten und neozoen in Mitteleuropa. Ulmer, Stuttgart

    Google Scholar 

  • Kowarik I (2011) Novel urban ecosystems, biodiversity, and conservation. Environ Pollut 159:1974–1983

  • Kühn I, Brandl R, Klotz S (2004) The Flora of German cities is naturally species rich. Evol Ecol Res 6:749–764

    Google Scholar 

  • Küzmič F, Šilc U (2017) Alien species in vegetation of Slovenia. Periodicum Biologorum 119:199–208. https://doi.org/10.18054/pb.v119i3.5183

    Article  Google Scholar 

  • Landolt E (2001) Flora der Stadt Zurich (1984–1998) (Vol. 1). Birkhauser Basel

  • Landsberg H (1981) The urban climate. Academic Press, New York, NY

    Google Scholar 

  • Leuschner C, Ellenberg H (2017) Ecology of Central European Non-Forest Vegetation: Coastal to Alpine. Springer International Publishing, Cham, Natural to Man-Made Habitats. https://doi.org/10.1007/978-3-319-43048-5_13

    Book  Google Scholar 

  • Liu Z, He C, Wu J (2016) The Relationship between Habitat Loss and Fragmentation during Urbanization: An Empirical Evaluation from 16 World Cities. PLoS One 11:e0154613. https://doi.org/10.1371/journal.pone.0154613

  • Lososová Z et al (2011) Diversity of Central European urban biota: effects of human-made habitat types on plants and land snails. J Biogeogr 38:1152–1163. https://doi.org/10.1111/j.1365-2699.2011.02475.x

    Article  Google Scholar 

  • Lososová Z et al. (2012) Native and alien floras in urban habitats: a comparison across 32 cities of central Europe. Glob Ecol Biogeogr 21:545–555

  • Lovett GM, Traynor MM, Pouyat RV, Carreiro MM, Zhu W-X, Baxter JW (2000) Atmospheric Deposition to Oak Forests along an Urban−Rural Gradient. Environ Sci Technol 34:4294–4300. https://doi.org/10.1021/es001077q

  • Luck GW, Smallbone LT (2010) Species diversity and urbanisation: patterns, drivers and implications. In: Gaston KJ (ed) Urban Ecology. Ecological Reviews. Cambridge University Press, Cambridge, pp 88–119. https://doi.org/10.1017/CBO9780511778483.006

  • Martinčič A et al. (2007) Mala flora Slovenije: ključ za določanje praprotnic in semenk. 4. edn. Tehniška založba Slovenije, Ljubljana

  • Martini F (2010) Flora vascolare spontanea di Trieste. Lint Editoriale, Trieste

  • Maurer U, Peschel T, Schmitz S (2000) The Flora of Selected Urban Land-Use Types in Berlin and Potsdam with Regard to Nature Conservation in Cities. Landsc Urban Plan 46:209–215. https://doi.org/10.1016/S0169-2046(99)00066-3

    Article  Google Scholar 

  • McDonnell MJ (2011) The history of urban ecology-an ecologist’s perspective. In: Niemelä J (ed) Urban ecology-patterns, processes, and applications. Oxford University Press, pp 5–13

  • McKinney ML (2008) Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst 11:161–176. https://doi.org/10.1007/s11252-007-0045-4

  • Muratet A, Machon N, Jiguet F, Moret J, Porcher E (2007) The Role of Urban Structures in the Distribution of Wasteland Flora in the Greater Paris Area. France Ecosystems 10:661–671

    Article  Google Scholar 

  • Parker S (2015) Incorporating critical elements of city distinctiveness into urban biodiversity conservation. Biodivers Conserv 24:683–700

    Article  Google Scholar 

  • Pichler-Milanović N, Lamovšek AZ (2010) Urban Land Use Management in Ljubljana: From Competitiveness to Sustainability - or vice versa? In: Schrenk M, Popovich VV, Zeile P (eds) REAL CORP 2010, Vienna, 18–20 May 2010. pp 817–825

  • Pickett STA, Cadenasso ML, Grove JM, Nilon CH, Pouyat RV, Zipperer WC, Costanza R (2001) Urban ecological systems: linking terrestrial ecological, physical and socioeconomic components of metropolitan areas. Annu Rev Ecol Syst 32:127–157

  • Pignatti S (2005) Valori di bioindicazione delle piante vascolari della flora d`Italia Braun-Blanquetia 39:1–97

  • Pirnat J (1997) Razpored gozdov v ljubljanski urbani krajini (Distribution of forests in the Ljubljana townscape) Zbornik gozdarstva in lesarstva 53:159–182

  • Pyšek P (1995) Approaches to studying spontaneous settlement flora and vegetation in central Europe: a review. In: Sukopp H, Numata M, Huber A (eds) Urban Ecology as a Basis of Urban Planning. SPB Academic Publishing, Amsterdam, pp 23–39

    Google Scholar 

  • R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Ramalho CE, Hobbs RJ (2012) Time for a change: dynamic urban ecology. Trends Ecol Evol 27:179–188. https://doi.org/10.1016/j.tree.2011.10.008

    Article  PubMed  Google Scholar 

  • Rysiak A, Czarnecka B (2018) The urban heat island and the features of the flora in the Lublin City area, SE Poland. Acta Agrobot 71:1736. https://doi.org/10.5586/aa.1736

    Article  Google Scholar 

  • Salinitro M, Alessandrini A, Zappi A, Melucci D, Tassoni A (2018) Floristic diversity in different urban ecological niches of a Southern European City. Sci Rep-Uk 8:1–10

    CAS  Google Scholar 

  • Schmidt KJ, Poppendieck H-H, Jensen K (2014) Effects of urban structure on plant species richness in a large European city. Urban Ecosyst 17:427–444

    Google Scholar 

  • Schmiedel I, Bergmeier E, Culmsee H (2015) Plant species richness patterns along a gradient of landscape modification intensity in Lower Saxony, Germany. Lands Urban Plan 141:41–51. https://doi.org/10.1016/j.landurbplan.2015.03.009

    Article  Google Scholar 

  • Šilc U (2010) Synanthropic vegetation: pattern of various disturbances on life history traits. Acta Bot Croat 69:215–225

    Google Scholar 

  • Stešević D, Jovanović S (2008) Flora of the city of Podgorica, Montenegro: taxonomic analysis. Arch Biol Sci 60:245–253

  • Sudnik-Wójcikowska B, Moraczewski IR (1998) Selected Spatial Aspects of the Urban Flora Synanthropization, Methodical Considerations. Phytocoenosis 10:69–78

    Google Scholar 

  • Ter Braak CJF, Šmilauer P (2012) Canoco reference manual and user's guide: software for ordination, version 5.0. Microcomputer Power, Ithaca, USA

  • The World Bank TW (2020) Urban population (% of total population) - European Union. Food and Agriculture Organization, electronic files and web site. https://data.worldbank.org. Accessed 25 Dec 2020

  • Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453

  • Tiran J (2017) Kakovost bivalnega okolja v Ljubljani. Georitem. Založba ZRC, Ljubljana

  • Ulpiani G (2021) On the linkage between urban heat island and urban pollution island: Three-decade literature review towards a conceptual framework. Sci Total Environ 751:141727. https://doi.org/10.1016/j.scitotenv.2020.141727

    Article  CAS  PubMed  Google Scholar 

  • Van Kleunen M et al (2018) The changing role of ornamental horticulture in alien plant invasions. Biol Rev 93:1421–1437

    Article  Google Scholar 

  • Williams NS, Schwartz MW, Vesk PA, McCarthy MA, Hahs AK, Clemants SE, Corlett RT, Duncan RP, Norton BA, Thompson K, McDonnell MJ (2009) A conceptual framework for predicting the effects of urban environments on floras. J Ecol 97:4–9. https://doi.org/10.1111/j.1365-2745.2008.01460.x

  • Williams NSG, Hahs AK, Vesk PA (2015) Urbanisation, plant traits and the composition of urban floras. Perspect Plant Ecol Evol Syst 17:78–86

    Google Scholar 

  • Wirth T, Kovács D, Sebe K, Csiky J (2020) The vascular flora of Pécs and its immediate vicinity (South Hungary) I.: species richness and the distribution of native and alien plants. Biologia Futura 71:19–30

  • Wittig R (2008) Siedlungsvegetation. Ulmer Verlag, Stuttgart

    Google Scholar 

  • Wittig R (2010) Biodiversity of Urban-Industrial Areas and its Evaluation - a Critical Review. In: Müller N, Werner, P., Kelcey, JG, (ed) Urban Biodiversity and Design. Wiley, pp 38–55

  • Wood S (2015) Package ‘mgcv’ R package version:1–7

  • Zelený D, Schaffers AP (2012) Too good to be true: pitfalls of using mean Ellenberg indicator values in vegetation analyses. J Veg Sci 23:419–431. https://doi.org/10.1111/j.1654-1103.2011.01366.x

    Article  Google Scholar 

  • Železnikar Š, Eler K, Pintar M (2017) Vroča Točka v Mestu: Povezava Ekosistemskih Storitev in Biotske Pestrosti Mestnih Zelenih Površin. Acta Agriculturae Slovenica 109:111–123. https://doi.org/10.14720/aas.2017.109.1.11

    Article  Google Scholar 

Download references

Acknowledgements

We thank Zdeňka Lososová for comments on first drafts of the manuscript. We are grateful for the help to all those who sampled field data which provided material for this study. We also thank to three reviewers and editor for their helpful comments on earlier draft of the manuscript.

Funding

Part of data used in our analysis was financed by City of Ljubljana. The research was partly financed through the programme P1-0236 (ARRS- Slovenian Research Agency).

Author information

Authors and Affiliations

Authors

Contributions

NJ concieved and lead the sampling, UŠ made statistical analyses and wrote the first draft of the manuscript, which FK and NJ critically and substantially edited. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Urban Šilc.

Ethics declarations

Consent for publication

All authors agreed with the content and all gave explicit consent to submit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jogan, N., Küzmič, F. & Šilc, U. Urban structure and environment impact plant species richness and floristic composition in a Central European city. Urban Ecosyst 25, 149–163 (2022). https://doi.org/10.1007/s11252-021-01140-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-021-01140-4

Keywords

Navigation