Skip to main content

Advertisement

Log in

Plant-pollinator networks in Australian urban bushland remnants are not structurally equivalent to those in residential gardens

Urban Ecosystems Aims and scope Submit manuscript

Abstract

Urbanisation is a prominent and increasing form of land-use change, with the potential to disrupt the interactions between pollinators such as bees and the flowering plants that they visit. This in turn may cause cascading local extinctions and have consequences for pollination services. Network approaches go beyond simple metrics of abundance and species richness, enabling understanding of how the structure of plant-pollinator communities are affected by urbanisation. Here we compared pollination networks between native vegetation (bushland) remnants and residential gardens in the urbanised region of the southwest Australian biodiversity hotspot. Across fourteen sites, seven per habitat, plant-bee visitor networks were created from surveys conducted monthly during the spring-summer period over two years. Extinction slope (a measure of how extinctions cascade through the network), and network robustness and nestedness were higher for bushland remnants, suggesting that networks in bushland remnants had greater functional integrity, but if disrupted, more cascading extinctions could occur. In contrast, niche overlap between pollinators was higher in residential gardens, suggesting greater competition for resources. Most species-level properties did not differ between habitats, except for normalised degree, which was higher in bushland remnants. In conclusion, it appears that pollination networks in managed residential gardens are not structurally equivalent with those in bushland remnants. This has implications for conservation of wild bee assemblages in this biodiversity hotspot, and suggests removal of remnant native vegetation for residential development could disrupt the integrity of plant-pollinator assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Plant-pollinator matrices and a matrix of all flowering plants present and their abundances for each survey are available at: Prendergast, K. (2020). Plant-pollinator network interaction matrices and flowering plant species composition in urban bushland remnants and residential gardens in the southwest Western Australian biodiversity hotspot. Research Data Australia. Available: https://doi.org/10.25917/5f3a0aa235fda.

References

  • Aizen MA, Feinsinger P (1994) Habitat fragmentation, native insect pollinators, and feral honey bees in argentine ‘Chaco Serrano’. Ecol Appl 4:378–392

    Article  Google Scholar 

  • Aizen MA, Morales CL, Morales JM (2008) Invasive mutualists erode native pollination webs. PLoS Biol 6(2):e31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alarcón R, Waser NM, Ollerton J (2008) Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 117:1796–1807. https://doi.org/10.1111/j.0030-1299.2008.16987.x

    Article  Google Scholar 

  • Albrecht M, Riesen M, Schmid B (2010) Plant–pollinator network assembly along the chronosequence of a glacier foreland. Oikos 119:1610–1624

    Article  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA for PRIMER guide to software and statistical methods. PRIMER-E, Plymouth

    Google Scholar 

  • Baldock KC et al (2019) A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat Ecol Evol 3:363

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballantyne G, Baldock KCR, Rendell L, Willmer PG (2017) Pollinator importance networks illustrate the crucial value of bees in a highly speciose plant community. Sci Rep 7(1):8389. https://doi.org/10.1038/s41598-017-08798-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett R, Tay EP (2016) Perth plants: a field guide to the bushland and coastal flora of Kings Park and Bold Park. Csiro Publishing, clayton

  • Bartomeus I, Cariveau DP, Harrison T, Winfree R (2017) On the inconsistency of pollinator species traits for predicting either response to land-use change or functional contribution. Oikos 127(2):306–315. https://doi.org/10.1111/oik.04507

  • Bastolla U, Fortuna MA, Pascual-García A, Ferrera A, Luque B, Bascompte J (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458:1018–1020

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker BM, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Beckett SJ (2016) Improved community detection in weighted bipartite networks. R Soc Open Sci 3:140536

    Article  PubMed  PubMed Central  Google Scholar 

  • Biesmeijer JC et al (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Sci 313:351–354

    Article  CAS  Google Scholar 

  • Brown E, Burbidge A, Dell J, Edinger D, Hopper S, Wills R (1997) Pollination in Western Australia: a database of animals visiting flowers. Western Australian naturalists Club, Perth

    Google Scholar 

  • Buchholz S, Kowarik I (2019) Urbanisation modulates plant-pollinator interactions in invasive vs. native plant species. Sci Rep 9:6375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burkle LA, Alarcón R (2011) The future of plant–pollinator diversity: understanding interaction networks across time, space, and global change. Am J Bot 98:528–538

    Article  PubMed  Google Scholar 

  • Burkle LA, Irwin RE (2009) The importance of interannual variation and bottom–up nitrogen enrichment for plant–pollinator networks. Oikos 118:1816–1829. https://doi.org/10.1111/j.1600-0706.2009.17740.x

    Article  Google Scholar 

  • Chacoff NP, Vázquez DP, Lomáscolo SB, Stevani EL, Dorado J, Padrón B (2012) Evaluating sampling completeness in a desert plant–pollinator network. J Anim Ecol 81:190–200. https://doi.org/10.1111/j.1365-2656.2011.01883.x

    Article  PubMed  Google Scholar 

  • Core Team R (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Dalsgaard B, Trøjelsgaard K, Martín González AM, Nogués-Bravo D, Ollerton J, Petanidou T, Sandel B, Schleuning M, Wang Z, Rahbek C, Sutherland WJ, Svenning JC, Olesen JM (2013) Historical climate-change influences modularity and nestedness of pollination networks. Ecography 36:1331–1340

    Article  Google Scholar 

  • Dormann CF, Gruber B, Fründ J (2008) Introducing the bipartite package: analysing ecological networks. R News 8(2):8–11

  • Dupont YL, Padrón B, Olesen JM, Petanidou T (2009) Spatio-temporal variation in the structure of pollination networks. Oikos 118:1261–1269

    Article  Google Scholar 

  • Dylewski Ł, Maćkowiak Ł, Banaszak-Cibicka W (2019) Are all urban green spaces a favourable habitat for pollinator communities? Bees, butterflies and hoverflies in different urban green areas. Ecol Entomol 44:678–689

    Article  Google Scholar 

  • Ebeling A, Klein AM, Schumacher J, Weisser WW, Tscharntke T (2008) How does plant richness affect pollinator richness and temporal stability of flower visits? Oikos 117:1808–1815

    Article  Google Scholar 

  • Faeth SH, Bang C, Saari S (2011) Urban biodiversity: patterns and mechanisms. Ann N Y Acad Sci 1223:69–81. https://doi.org/10.1111/j.1749-6632.2010.05925.x

    Article  PubMed  Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403

    Article  Google Scholar 

  • Ferreira PA, Boscolo D, Viana BF (2013) What do we know about the effects of landscape changes on plant–pollinator interaction networks? Ecol Indic 31:35–40

    Article  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Kremen C, Morales JM, Bommarco R, Cunningham SA, Carvalheiro LG, Chacoff NP, Dudenhöffer JH, Greenleaf SS, Holzschuh A, Isaacs R, Krewenka K, Mandelik Y, Mayfield MM, Morandin LA, Potts SG, Ricketts TH, Szentgyörgyi H, Viana BF, Westphal C, Winfree R, Klein AM (2011) Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol Lett 14:1062–1072

    Article  PubMed  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Harder LD, Afik O, Bartomeus I, Benjamin F, Boreux V, Cariveau D, Chacoff NP, Dudenhoffer JH, Freitas BM, Ghazoul J, Greenleaf S, Hipolito J, Holzschuh A, Howlett B, Isaacs R, Javorek SK, Kennedy CM, Krewenka KM, Krishnan S, Mandelik Y, Mayfield MM, Motzke I, Munyuli T, Nault BA, Otieno M, Petersen J, Pisanty G, Potts SG, Rader R, Ricketts TH, Rundlof M, Seymour CL, Schuepp C, Szentgyorgyi H, Taki H, Tscharntke T, Vergara CH, Viana BF, Wanger TC, Westphal C, Williams N, Klein AM (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611

    Article  CAS  PubMed  Google Scholar 

  • Geslin B, Gauzens B, Thébault E, Dajoz I (2013) Plant pollinator networks along a gradient of urbanisation. PLoS One 8:e63421

    Article  PubMed  PubMed Central  Google Scholar 

  • Gotlieb A, Hollender Y, Mandelik Y (2011) Gardening in the desert changes bee communities and pollination network characteristics. Basic Appl Ecol 12:310–320

    Article  Google Scholar 

  • Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596

    Article  PubMed  Google Scholar 

  • Güneralp B, McDonald RI, Fragkias M, Goodness J, Marcotullio PJ, Seto KC (2013) Urbanization forecasts, effects on land use, biodiversity, and ecosystem services. In: Elmqvist T et al. (eds) Urbanization, biodiversity and ecosystem services: challenges and opportunities. Springer, Dordrecht, pp 437–452

  • Harrison T, Winfree R (2015) Urban drivers of plant-pollinator interactions. Funct Ecol 29:879–888

    Article  Google Scholar 

  • Heleno R, Devoto M, Pocock M (2012) Connectance of species interaction networks and conservation value: is it any good to be well connected? Ecol Indic 14:7–10. https://doi.org/10.1016/j.ecolind.2011.06.032

    Article  Google Scholar 

  • Hernandez JL, Frankie GW, Thorp RW (2009) Ecology of urban bees: a review of current knowledge and directions for future study. Cities & the Environment 2(1):1–15

  • Hopper SD (2009) OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant Soil 322:49–86

    Article  CAS  Google Scholar 

  • Hopper SD, Burbidge A (1989) Conservation status of Banksia woodlands on the swan coastal plain. J R Soc West Aust 71(5):115–116

    Google Scholar 

  • Houston TF (2000) Native bees on wildflowers in Western Australia. Western Australian Insect Study Society, Western Australia

    Google Scholar 

  • Houston TF (2018) A guide to the native bees of Australia. CSIRO Publishing, Australia

    Book  Google Scholar 

  • Hussey B, Keighery G, Cousens R, Dodd J, Lloyd S (1997) Western weeds: a guide to the weeds of Western Australia. The Weeds Society of Western Australia (Inc.), Kensington

  • Ings TC, Montoya JM, Bascompte J, Blüthgen N, Brown L, Dormann CF, Edwards F, Figueroa D, Jacob U, Jones JI, Lauridsen RB, Ledger ME, Lewis HM, Olesen JM, van Veen FJF, Warren PH, Woodward G (2009) Ecological networks–beyond food webs. J Anim Ecol 78:253–269

    Article  PubMed  Google Scholar 

  • Jędrzejewska-Szmek K, Zych M (2013) Flower-visitor and pollen transport networks in a large city: structure and properties. Arthropod Plant Interact 7:503–516

    Article  Google Scholar 

  • Kaiser-Bunbury CN, Muff S, Memmott J, Müller CB, Caflisch A (2010) The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol Lett 13:442–452

    Article  PubMed  Google Scholar 

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Syst 29(1):83–112

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest package: tests in linear mixed effects models 2017 82:26 https://doi.org/10.18637/jss.v082.i13

  • Lázaro A, Nielsen A, Totland Ø (2010) Factors related to the inter-annual variation in plants’ pollination generalization levels within a community. Oikos 119:825–834. https://doi.org/10.1111/j.1600-0706.2009.18017.x

    Article  Google Scholar 

  • Mathiasson ME, Rehan SM (2020) Wild bee declines linked to plant-pollinator network changes and plant species introductions. Insect Conser Divers n/a https://doi.org/10.1111/icad.12429, 13, 595, 605

  • McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176. https://doi.org/10.1007/s11252-007-0045-4

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. https://doi.org/10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

  • Niinemets Ü, Peñuelas J (2008) Gardening and urban landscaping: significant players in global change. Trends Plant Sci 13(2):60–65. https://doi.org/10.1016/j.tplants.2007.11.009

  • Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci 104:19891–19896. https://doi.org/10.1073/pnas.0706375104

    Article  PubMed  PubMed Central  Google Scholar 

  • Olesen JM, Bascompte J, Elberling H, Jordano P (2008) Temporal dynamics in a pollination network. Ecol 89:1573–1582

    Article  Google Scholar 

  • Ollerton J (2017) Pollinator diversity: distribution, Ecological Function, and Conservation. Annu Rev Ecol Evol Syst 48:353–376. https://doi.org/10.1146/annurev-ecolsys-110316-022919

    Article  Google Scholar 

  • Pauw A (2007) Collapse of a pollination web in small conservation areas. Ecology 88:1759–1769

    Article  PubMed  Google Scholar 

  • Pianka ER (1974) Niche overlap and diffuse competition. Proc Natl Acad Sci 71:2141–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prendergast K (2020a) Species of native bees in the urbanised region of the Southwest Western Australian biodiversity hotspot. Curtin University. https://doi.org/10.25917/5ee09df795b7c

  • Prendergast K (2020b) Plant-pollinator network interaction matrices and flowering plant species composition in urban bushland remnants and residential gardens in the Southwest Western Australian biodiversity hotspot. Curtin University. https://doi.org/10.25917/5f3a0aa235fda

  • Prendergast K, Menz MH, Bateman B, Dixon K (2020) The relative performance of sampling methods for native bees: an empirical test and review of the literature. Ecosphere https://doi.org/10.1002/ecs2.3076, 11

  • Renaud E, Baudry E, Bessa-Gomes C (2020) Influence of taxonomic resolution on mutualistic network properties. Ecol Evol 10:3248–3259. https://doi.org/10.1002/ece3.6060

    Article  PubMed  PubMed Central  Google Scholar 

  • Saavedra S, Stouffer DB, James A, Pitchford JW, Plank MJ (2013) “ disentangling nestedness” disentangled/James et al. reply. Nature 500:E1–E2

    Article  CAS  PubMed  Google Scholar 

  • Santamaría L, Rodríguez-Gironés MA (2007) Linkage rules for plant–pollinator networks: trait complementarity or exploitation barriers? PLoS Biol 5:e31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santamaría S, Sánchez AM, López-Angulo J, Ornosa C, Mola I, Escudero A (2018) Landscape effects on pollination networks in Mediterranean gypsum islands. Plant Biol 20:184–194

    Article  PubMed  Google Scholar 

  • Spiesman BJ, Inouye BD (2013) Habitat loss alters the architecture of plant–pollinator interaction networks. Ecology 94:2688–2696

    Article  PubMed  Google Scholar 

  • Taki H, Kevan PG (2007) Does habitat loss affect the communities of plants and insects equally in plant–pollinator interactions? Prelim Find Biodivers Conserv 16:3147–3161

    Article  Google Scholar 

  • Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853–856

    Article  PubMed  CAS  Google Scholar 

  • Theodorou P, Albig K, Radzevičiūtė R, Settele J, Schweiger O, Murray TE, Paxton RJ (2017) The structure of flower visitor networks in relation to pollination across an agricultural to urban gradient. Funct Ecol 31:838–847. https://doi.org/10.1111/1365-2435.12803

    Article  Google Scholar 

  • Traveset A, Tur C, Trøjelsgaard K, Heleno R, Castro-Urgal R, Olesen JM (2016) Global patterns of mainland and insular pollination networks. Glob Ecol Biogeogr 25:880–890

    Article  Google Scholar 

  • Trøjelsgaard K, Olesen JM (2013) Macroecology of pollination networks. Glob Ecol Biogeogr 22:149–162

    Article  Google Scholar 

  • Trøjelsgaard K, Olesen JM (2016) Ecological networks in motion: micro-and macroscopic variability across scales. Funct Ecol 30:1926–1935

    Article  Google Scholar 

  • Tylianakis JM, Laliberté E, Nielsen A, Bascompte J (2010) Conservation of species interaction networks. Biol Conserv 143:2270–2279

    Article  Google Scholar 

  • Vamosi JC, Moray CM, Garcha NK, Chamberlain SA, Mooers AØ (2014) Pollinators visit related plant species across 29 plant-pollinator networks. Ecol Evol 4:2303–2315. https://doi.org/10.1002/ece3.1051

    Article  PubMed  PubMed Central  Google Scholar 

  • Vázquez DP, Blüthgen N, Cagnolo L, Chacoff NP (2009) Uniting pattern and process in plant–animal mutualistic networks: a review. Ann Bot 103:1445–1457

    Article  PubMed  PubMed Central  Google Scholar 

  • Watts S, Dormann CF, Martín González AM, Ollerton J (2016) The influence of floral traits on specialization and modularity of plant–pollinator networks in a biodiversity hotspot in the Peruvian Andes Ann Bot 118:415–429

  • Weiner CN, Werner M, Linsenmair KE, Blüthgen N (2011) Land use intensity in grasslands: changes in biodiversity, species composition and specialisation in flower visitor networks. Basic Appl Ecol 12:292–299

    Article  Google Scholar 

  • Zotarelli HGS, Evans DM, Bego LR, Sofia SH (2014) A Comparison of Social Bee–Plant Networks between Two Urban Areas. Neotrop Entomol 43:399–408. https://doi.org/10.1007/s13744-014-0227-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K. Prendergast would like to acknowledge the assistance of C. Tauss, H. Lambers, and K. Dixon in providing identifications for native flora, and thank the home owners and councils for access to their gardens and greenspaces. Thank you to M. Menz for his discussions over network metrics and helpful comments on the draft of the manuscript, and to the two reviewers and editor for their constructive feedback for improving our manuscript.

Funding

This research was funded by a Forrest Research Scholarship awarded to K.P. K.P. also received funding from the Australian Wildlife Preservation Society.

Author information

Authors and Affiliations

Authors

Contributions

KSP designed the study, conducted the fieldwork, collated the data, performed the data analysis, and drafted the manuscript. JO edited the manuscript, advised on analyses, and provided critical feedback and supervision.

Corresponding author

Correspondence to Kit S. Prendergast.

Ethics declarations

Conflicts of interest/competing interests

None to declare.

Ethics approval (include appropriate approvals or waivers)

Not applicable.

Consent to participate (include appropriate statements)

Not applicable.

Code availability (software application or custom code)

Statistical analyses were conducted in the free R statistical software, and code involved the free downloadable packages available for R.

Supplementary Information

Online Resource 1

Table S1 Taxonomic categories (DOCX 13 kb)

Online Resource 2

Definitions of network and species-level indices (DOCX 17 kb)

Online Resource 3

Table S1 Network sizes. Network size was calculated as animals + plants (following Albrecht et al. 2010; Chacoff et al. 2012; Santamaría and Rodríguez-Gironés 2007). (XLSX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prendergast, K.S., Ollerton, J. Plant-pollinator networks in Australian urban bushland remnants are not structurally equivalent to those in residential gardens. Urban Ecosyst 24, 973–987 (2021). https://doi.org/10.1007/s11252-020-01089-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-020-01089-w

Keywords

Navigation