Skip to main content
Log in

Thanatin confers partial resistance against aflatoxigenic fungi in maize (Zea mays)

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Aflatoxin-producing fungi can contaminate plants and plant-derived products with carcinogenic secondary metabolites that present a risk to human and animal health. In this study, we investigated the effect of antimicrobial peptides on the major aflatoxigenic fungi Aspergillus flavus and A. parasiticus. In vitro assays with different chemically-synthesized peptides demonstrated that the broad-spectrum peptide thanatin from the spined soldier bug (Podisus maculiventris) had the greatest potential to eliminate aflatoxigenic fungi. The minimal inhibitory concentrations of thanatin against A. flavus and A. parasiticus were 3.13 and 12.5 µM, respectively. A thanatin cDNA was subsequently cloned in a plant expression vector under the control of the ubiquitin-1 promoter allowing the recombinant peptide to be directed to the apoplast in transgenic maize plants. Successful integration of the thanatin expression cassette was confirmed by PCR and expression was demonstrated by semi-quantitative RT-PCR in transgenic maize kernels. Infection assays with maize kernels from T1 transgenic plants showed up to three-fold greater resistance against Aspergillus spp. infections compared to non-transgenic kernels. We demonstrated for the first time that heterologous expression of the antimicrobial peptide thanatin inhibits the growth of Aspergillus spp. in transgenic maize plants offering a solution to protect crops from aflatoxin-producing fungi and the resulting aflatoxin contamination in the field and under storage conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas H, Mascagni H Jr, Bruns H, Shier W (2012) Effect of planting density, irrigation regimes, and maize hybrids with varying ear size on yield, and aflatoxin and fumonisin contamination levels. Am J Plant Sci 3:1341–1354. doi:10.4236/ajps.2012.310162

    Article  Google Scholar 

  • Allen A, Islamovic E, Kaur J, Gold S, Shah D, Smith TJ (2011) Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut. Plant Biotechnol J 9:857–864. doi:10.1111/j.1467-7652.2011.00590.x

    Article  CAS  PubMed  Google Scholar 

  • Armstrong CL, Green CE, Phillips RL (1991) Development and availability of germplasm with high Type II culture formation response. Maize Genet Coop Newsl 65:92–93

    Google Scholar 

  • Attílio LB, Mourão Filho FdAA, Harakava R, da Silva TL, Miyata LY, Stipp LCL, Mendes BMJ (2013) Genetic transformation of sweet oranges with the D4E1 gene driven by the AtPP2 promoter. Pesq Agropec Bras 48:741–747. doi:10.1590/S0100-204X2013000700006

    Article  Google Scholar 

  • Azziz-Baumgartner E et al (2005) Case–control study of an acute aflatoxicosis outbreak, Kenya, 2004. Environ Health Perspect 113:1779–1783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blount WP (1961) Turkey “X” disease. Turkeys 52:55–58

    Google Scholar 

  • Brown RL, Cleveland TE, Payne GA, Woloshuk CP, Campbell KW, White DG (1995) Determination of resistance to aflatoxin production in maize kernels and detection of fungal colonization using an Aspergillus flavus transformant expressing Escherichia coli glucuronidase. Phytopathology 85:983–989. doi:10.1094/Phyto-85-98

    Article  CAS  Google Scholar 

  • Brown RL, Chen ZY, Cleveland TE, Menkir A, Fakhoury A (2009) Identification of maize breeding markers through investigations of proteins associated with aflatoxin-resistance. In: Mycotoxin prevention and control in agriculture, vol 1031. American Chemical Society, pp 157–165. doi:10.1021/bk-2009-1031.ch011

  • Brown RL, Menkir A, Chen ZY, Bhatnagar D, Yu J, Yao H, Cleveland TE (2013) Breeding aflatoxin-resistant maize lines using recent advances in technologies—a review. Food Addit Contam 30:1382–1391. doi:10.1080/19440049.2013.812808

    Article  CAS  Google Scholar 

  • Bulet P, Hetru C, Dimarcq JL, Hoffmann D (1999) Antimicrobial peptides in insects; structure and function. Dev Comp Immunol 23:329–344

    Article  CAS  PubMed  Google Scholar 

  • Campbell KW, Hamblin AM, White DG (1997) Inheritance of resistance to aflatoxin production in the cross between corn inbreds B73 and LB31. Phytopathology 87:1144–1147. doi:10.1094/PHYTO.1997.87.11.1144

    Article  CAS  PubMed  Google Scholar 

  • Cary JW, Rajasekaran K, Jaynes JM, Cleveland TE (2000) Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Sci 154:171–181

    Article  CAS  PubMed  Google Scholar 

  • Cary JW, Rajasekaran K, Brown RL, Luo M, Chen ZY, Bhatnagar D (2011) Developing resistance to aflatoxin in maize and cottonseed. Toxins 3:678–696. doi:10.3390/toxins3060678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chakrabarti A, Ganapathi TR, Mukherjee PK, Bapat VA (2003) MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216:587–596. doi:10.1007/s00425-002-0918-y

    CAS  PubMed  Google Scholar 

  • Chikwamba RK, Scott MP, Mejia LB, Mason HS, Wang K (2003) Localization of a bacterial protein in starch granules of transgenic maize kernels. Proc Natl Acad Sci U S A 100:11127–11132. doi:10.1073/pnas.1836901100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cleveland TE, Dowd PF, Desjardins AE, Bhatnagar D, Cotty PJ (2003) United States Department of Agriculture—Agricultural Research Service research on pre-harvest prevention of mycotoxins and mycotoxigenic fungi in US crops. Pest Manag Sci 59:629–642

    Article  CAS  PubMed  Google Scholar 

  • De Lucca AJ et al (1998) Fungicidal properties, sterol binding, and proteolytic resistance of the synthetic peptide D4E1. Can J Microbiol 44:514–520

    Article  PubMed  Google Scholar 

  • DeGray G, Rajasekaran K, Smith F, Sanford J, Daniell H (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127:852–862. doi:10.1104/pp.010233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diener UL, Cole RJ, Sanders TH, Payne GA, Lee LS, Klich MA (1987) Epidemiology of aflatoxin formation by Aspergillus flavus. Annu Rev Phytopathol 25:249–270

    Article  CAS  Google Scholar 

  • Dorner JW (2008) Management and prevention of mycotoxins in peanuts. Food Addit Contam 25:203–208. doi:10.1080/02652030701658357

    Article  CAS  Google Scholar 

  • Dorner JW, Cole RJ, Wicklow DT (1999) Aflatoxin reduction in corn through field application of competitive fungi. J Food Prot 62:650–656

    CAS  PubMed  Google Scholar 

  • Drakakaki G et al (2005) Endosperm-specific co-expression of recombinant soybean ferritin and aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol 59:869–880. doi:10.1007/s11103-005-1537-3

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich KC (2014) Non-aflatoxigenic to prevent aflatoxin contamination in crops: advantages and limitations. Front Microbiol 5:50. doi:10.3389/fmicb.2014.00050

    PubMed Central  PubMed  Google Scholar 

  • Fehlbaum P, Bulet P, Michaut L, Lagueux M, Broekaert WF, Hetru C, Hoffmann JA (1994) Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J Biol Chem 269:33159–33163

    CAS  PubMed  Google Scholar 

  • Fehlbaum P et al (1996) Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc Natl Acad Sci USA 93:1221–1225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fountain JC, Scully BT, Ni X, Kemerait RC, Lee RD, Chen ZY, Guo B (2014) Environmental influences on maize- interactions and aflatoxin production. Front Microbiol 5:40. doi:10.3389/fmicb.2014.00040

    Article  PubMed Central  PubMed  Google Scholar 

  • Frame BR et al (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22. doi:10.1104/pp.000653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ganapathi TR, Ghosh SB, Laxmi NHS, Bapat VA (2007) Expression of an antimicrobial peptide (MSI-99) confers enhanced resistance to Aspergillus niger in transgenic potato. Indian J Biotechnol 6:63–67

    CAS  Google Scholar 

  • Gong Y, Egal S, Hounsa A, Turner P, Hall A, Cardwell K, Wild C (2003) Determinants of aflatoxin exposure in young children from Benin and Togo, West Africa: the critical role of weaning. Int J Epidemiol 32:556–562. doi:10.1093/ije/dyg109

    Article  CAS  PubMed  Google Scholar 

  • Heathcote JG, Hibbert JR (1978) Aflatoxins: chemical and biological aspects. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  • Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW (2007) Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology 153:1677–1692. doi:10.1099/mic.0.2007/007641-0

    Article  CAS  PubMed  Google Scholar 

  • Hou Z et al (2013) R-thanatin inhibits growth and biofilm formation of methicillin-resistant Staphylococcus epidermidis in vivo and in vitro. Antimicrob Agents Chemother 57:5045–5052. doi:10.1128/aac.00504-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Imamura T et al (2010) Acquired resistance to the rice blast in transgenic rice accumulating the antimicrobial peptide thanatin. Transgenic Res 19:415–424. doi:10.1007/s11248-009-9320-x

    Article  CAS  PubMed  Google Scholar 

  • Johnson ET, Berhow MA, Dowd PF (2007) Expression of a maize Myb transcription factor driven by a putative silk-specific promoter significantly enhances resistance to Helicoverpa zea in transgenic maize. J Agric Food Chem 55:2998–3003. doi:10.1021/jf0633600

    Article  CAS  PubMed  Google Scholar 

  • Jung YJ, Kang KK (2014) Application of antimicrobial peptides for disease control in plants. Plant Breed Biotechnol 2:1–13

    Article  Google Scholar 

  • Koch A, Khalifa W, Langen G, Vilcinskas A, Kogel K-H, Imani J (2012) The antimicrobial peptide thanatin reduces fungal infections in Arabidopsis. J Phytopathol 160:606–610. doi:10.1111/j.1439-0434.2012.01946.x

    Article  CAS  Google Scholar 

  • Lawyer C, Pai S, Watabe M, Bakir H, Eagleton L, Watabe K (1996) Effects of synthetic form of tracheal antimicrobial peptide on respiratory pathogens. J Antimicrob Chemother 37:599–604

    Article  CAS  PubMed  Google Scholar 

  • Levashina EA, Ohresser S, Bulet P, Reichhart JM, Hetru C, Hoffmann JA (1995) Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur J Biochem 233:694–700

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wu F (2010) Global burden of aflatoxin-induced hepatocellular carcinoma: a risk assessment. Environ Health Perspect 118:818–824. doi:10.1289/ehp.0901388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Makovitzki A, Viterbo A, Brotman Y, Chet I, Shai Y (2007) Inhibition of fungal and bacterial plant pathogens in vitro and in planta with ultrashort cationic lipopeptides. Appl Environ Microbiol 73:6629–6636. doi:10.1128/aem.01334-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mentag R, Luckevich M, Morency MJ, Seguin A (2003) Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Tree Physiol 23:405–411

    Article  CAS  PubMed  Google Scholar 

  • Mideros SX, Windham GL, Williams WP, Nelson RJ (2009) Aspergillus flavus biomass in maize estimated by quantitative real-time polymerase chain reaction is strongly correlated with aflatoxin concentration. Plant Dis 93:1163–1170. doi:10.1094/pdis-93-11-1163

    Article  CAS  Google Scholar 

  • Mireia B et al (2014) Production of cecropin A antimicrobial peptide in rice seed endosperm. BMC Plant Biol 14:102

    Article  Google Scholar 

  • Mohammadi H (2011) A review of aflatoxin M1, milk, and milk products. In: G-G (ed) Aflatoxins—biochemistry and molecular biology. InTech. doi:10.5772/24353

  • Montesinos E (2007) Antimicrobial peptides and plant disease control. FEMS Microbiol Lett 270:1–11. doi:10.1111/j.1574-6968.2007.00683.x

    Article  CAS  PubMed  Google Scholar 

  • Newman SJ, Smith JR, Stenske KA, Newman LB, Dunlap JR, Imerman PM, Kirk CA (2007) Aflatoxicosis in nine dogs after exposure to contaminated commercial dog food. J Vet Diagn Invest 19:168–175

    Article  PubMed  Google Scholar 

  • Ngindu A et al (1982) Outbreak of acute hepatitis caused by aflatoxin poisoning in Kenya. The Lancet 319:1346–1348

    Article  Google Scholar 

  • Paz M, Shou H, Guo Z, Zhang Z, Banerjee A, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136:167–179. doi:10.1023/B:EUPH.0000030669.75809.dc

    Article  CAS  Google Scholar 

  • Probst C, Njapau H, Cotty PJ (2007) Outbreak of an acute aflatoxicosis in Kenya in 2004: identification of the causal agent. Appl Environ Microbiol 73:2762–2764. doi:10.1128/aem.02370-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rahnamaeian M et al (2009) Insect peptide metchnikowin confers on barley a selective capacity for resistance to fungal ascomycetes pathogens. J Exp Bot 60:4105–4114. doi:10.1093/jxb/erp240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rajasekaran K, Cary JW, Jaynes JM, Cleveland TE (2005) Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. Plant Biotechnol J 3:545–554. doi:10.1111/j.1467-7652.2005.00145.x

    Article  CAS  PubMed  Google Scholar 

  • Rasche S, Martin A, Holzem A, Fischer R, Schinkel H, Schillberg S (2011) One-step protein purification: use of a novel epitope tag for highly efficient detection and purification of recombinant proteins. Biotechnol J 5:1–6. doi:10.2174/1874070701105010001

    CAS  Google Scholar 

  • Robens J, Cardwell KF (2003) The costs of mycotoxin management to the USA: management of aflatoxins in the United States. Toxin Rev 22:139–152

    Article  Google Scholar 

  • Robert É, Fillion M, Otis F, Voyer N, Auger M (2014) Understanding how the antimicrobial peptide thanatin interacts with the lipid bilayer of cell walls using model membranes. Biophys J 106:85a. doi:10.1016/j.bpj.2013.11.546

    Article  Google Scholar 

  • Scheidegger KA, Payne GA (2003) Unlocking the secrets behind secondary metabolism: a review of Aspergillus flavus from pathogenicity to functional genomics. Toxin Rev 22:423–459. doi:10.1081/txr-120024100

    Article  CAS  Google Scholar 

  • Schmidt C (2013) Breaking the mold: new strategies for fighting aflatoxins. Environ Health Perspect. doi:10.1289/ehp.121-A270

    Google Scholar 

  • Schubert M, Agdour S, Fischer R, Olbrich Y, Schinkel H, Schillberg S (2010) A monoclonal antibody that specifically binds chitosan in vitro and in situ on fungal cell walls. J Microbiol Biotechnol 20:1179–1184

    Article  CAS  PubMed  Google Scholar 

  • Schuhmann B, Seitz V, Vilcinskas A, Podsiadlowski L (2003) Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch Insect Biochem 53:125–133. doi:10.1002/arch.10091

    Article  CAS  Google Scholar 

  • Schumann U, Smith N, Kazan K, Ayliffe M, Wang M-B (2013) Analysis of hairpin RNA transgene-induced gene silencing in Fusarium oxysporum. Silence 4:3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shahryari F, Safarnejad MR, Shams-Bakhsh M, Schillberg S, Nölke G (2013) Generation and expression in plants of a single-chain variable fragment antibody against the immunodominant membrane protein of Candidatus phytoplasma aurantifolia. J Microbiol Biotechnol 23:1047–1054

    Article  CAS  PubMed  Google Scholar 

  • Vaquero C et al (1999) Transient expression of a tumor-specific single-chain fragment and a chimeric antibody in tobacco leaves. Proc Natl Acad Sci USA 96:11128–11133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Villers P (2014) Aflatoxins and safe storage. Front Microbiol. doi:10.3389/fmicb.2014.00158

    PubMed Central  PubMed  Google Scholar 

  • Warburton ML, Williams WP (2014) Aflatoxin resistance in maize: what have we learned lately? Adv Bot 2014:10. doi:10.1155/2014/352831

    Google Scholar 

  • Wild CP (2007) Aflatoxin exposure in developing countries: the critical interface of agriculture and health. Food Nutr Bull 28:372S–380S

    Google Scholar 

  • Williams JH, Phillips TD, Jolly PE, Stiles JK, Jolly CM, Aggarwal D (2004) Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr 80:1106–1122

    CAS  PubMed  Google Scholar 

  • Williams W, Krakowsky MD, Windham GL, Balint-Kurti P, Hawkins LK, Henry W (2008) Identifiying maize germplasm with resistance to aflatoxin accumulation. Toxin Rev 27:319–345. doi:10.1080/15569540802399838

    Article  CAS  Google Scholar 

  • Williams WP, Ozkan S, Ankala A, Windham GL (2011) Ear rot, aflatoxin accumulation, and fungal biomass in maize after inoculation with Aspergillus flavus. Field Crops Res 120:196–200. doi:10.1016/j.fcr.2010.10.002

    Article  Google Scholar 

  • Williams WP, Krakowsky MD, Scully BT, Brown RL, Menkir A, Warburton ML, Windham GL (2014) Identifying and developing maize germplasm with resistance to accumulation of aflatoxins. World Mycotoxin J. doi:10.3920/WMJ2014.1751

    Google Scholar 

  • Wu G et al (2010) Membrane aggregation and perturbation induced by antimicrobial peptide of S-thanatin. Biochem Biophys Res Commun 395:31–35. doi:10.1016/j.bbrc.2010.03.107

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Li X, Fan X, Wu H, Wang S, Shen Z, Xi T (2011) The activity of antimicrobial peptide S-thanatin is independent on multidrug-resistant spectrum of bacteria. Peptides 32:1139–1145. doi:10.1016/j.peptides.2011.03.019

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Deng X, Wu P, Shen Z, Xu H (2012) Subacute toxicity of antimicrobial peptide S-thanatin in ICR mice. Peptides 36:109–113. doi:10.1016/j.peptides.2012.04.005

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Tang D, Chen W, Huang H, Wang R, Chen Y (2013) Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria. Gene 527:235–242. doi:10.1016/j.gene.2013.06.037

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84:5449–5453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zeitler B, Herrera Diaz A, Dangel A, Thellmann M, Meyer H, Sattler M, Lindermayr C (2013) De-novo design of antimicrobial peptides for plant protection. PLoS One 8:e71687. doi:10.1371/journal.pone.0071687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by DAAD Grant No. FKZ 50739422 and FKZ 54364828. The authors acknowledge Katey Warnberg and Dr. Kan Wang (pTF Iowa State University, Ames, USA) for providing the maize transformation vector pTF101.1gw1 and for the initial maize transformation, Prof. Dr. Andreas Vilcinskas (Justus-Liebig University, Giessen, Germany) for providing the thanatin sequence, Elke Stein (Justus-Liebig University, Giessen, Germany) for initial AMP testing, Dr. Thomas Rademacher (Fraunhofer IME, Aachen, Germany) for providing the vectors pTRAkc and pTRAux, and Ibrahim Al-Amedi (Fraunhofer IME) for cultivating the maize plants used in this investigation. We thank Dr. Richard M. Twyman for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greta Nölke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schubert, M., Houdelet, M., Kogel, KH. et al. Thanatin confers partial resistance against aflatoxigenic fungi in maize (Zea mays). Transgenic Res 24, 885–895 (2015). https://doi.org/10.1007/s11248-015-9888-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-015-9888-2

Keywords

Navigation