Skip to main content

Advertisement

Log in

Advances in transgenic rat production

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Predictable and reproducible production of transgenic rats from a standardized input of egg donors and egg recipients is essential for routine rat model production. In the course of establishing a transgenic rat service, transgenic founders were produced from three transgenes in outbred Sprague-Dawley (SD) rats and four transgenes in inbred Fischer 344 (F344) rats. Key parameters that affect transgenesis efficiency were assessed, including superovulation treatments, methods to prepare pseudopregnant recipients, and microinjection technique. Five superovulation regimens were compared and treatment with 20 IU PMSG and 30 IU HCG was selected for routine use. Four methods to prepare pseudopregnant egg recipients were compared and estrus synchronization with LHRHa and mating to vasectomized males was selected as most effective. More than 80% of eggs survived microinjection when modified pronuclear microinjection needles and DNA buffers were used. The efficiencies of transgenic production in rats and C57BL/6J (B6J) mice were compared to provide a context for assessing the difficulty of transgenic rat production. Compared to B6J mice, SD rat transgenesis required fewer egg donors per founder, fewer pseudopregnant egg recipients per founder, and produced more founders per eggs microinjected. Similar numbers of injection days were required to produce founders. These results suggest that SD rat transgenesis can be more efficient than B6J mouse transgenesis with the appropriate technical refinements. Advances in transgenic rat production have the potential to increase access to rat models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Armstrong DT, Opavsky MA (1988) Superovulation of immature rats by continuous infusion of follicle-stimulating hormone. Biol Reprod 39:511–518

    Article  PubMed  CAS  Google Scholar 

  • Auerbach AB, Norinsky R, Ho W, Losos K, Guo Q, Chatterjee S, Joyner AL (2003) Strain-dependent differences in the efficiency of transgenic mouse production. Transgenic Res 12:59–69

    Article  PubMed  CAS  Google Scholar 

  • Breban M, Hacquard-Bouder C, Falgarone G (2004) Animal models of HLA-B27-associated diseases. Curr Mol Med 4:31–40

    Article  PubMed  CAS  Google Scholar 

  • Brinster RL, Chen HY, Trumbauer ME, Yagle MK, Palmiter RD (1985) Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci (USA) 82:4438–4442

    Article  CAS  Google Scholar 

  • Charreau B, Tesson L, Buscail J, Soulillou JP, Anegon I (1996a) Analysis of human CD59 tissue expression directed by the CMV-IE-1 promoter in transgenic rats. Transgenic Res 5:443–50

    Article  CAS  Google Scholar 

  • Charreau B., Tesson L, Soulillou JP, Pourcel C, Anegon I (1996b) Transgenic rats: Technical aspects and models. Transgenic Res 5:223–234

    Article  CAS  Google Scholar 

  • Collidge TA, Lammie GA, Fleming S, Mullins JJ (2004) The role of the renin–angiotensin system in malignant vascular injury affecting the systemic and cerebral circulations. Prog Biophys Mol Biol 84:301–319

    Article  PubMed  CAS  Google Scholar 

  • Corbin TJ, McCabe JG (2002) Strain variation of immature female rats in response to various superovulatory hormone preparations and routes of administration. Contemp Topics 41:18–23

    CAS  Google Scholar 

  • Cornejo-Cortes MA, Sanchez-Torres C, Vazquez-Chagoyan JS, Suarez-Gomez HM, Garrido-Farina G, Meraz-Rios MA (2006) Rat embryo quality and production efficiency are dependent on gonatdotrophin dose in superovulatory treatments. Lab Animals 40:87–95

    Article  CAS  Google Scholar 

  • Dahl LK, Heine M, Tassinari L (1962) Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature 194:480–2

    Article  PubMed  CAS  Google Scholar 

  • Dycaico MJ, Provost GS, Kretz PL, Ransom SL, Moores JC, Short JM (1994) The use of shuttle vectors for mutation analysis in transgenic mice and rats. Mutat Res 307:461–78

    PubMed  CAS  Google Scholar 

  • Egwuagu CE, Sztein J, Mahdi RM, Li W, Chao-Chan C, Smith JA, Charukamnoetkanok P, Chepelinsky AB (1999) IFN-gamma increases the severity and accelerates the onset of experimental autoimmune uveitis in transgenic rats. J Immunol 162:510–517

    PubMed  CAS  Google Scholar 

  • Heideman J (1991) Transgenic rats: a discussion. Biotechnology 16:325–333

    PubMed  CAS  Google Scholar 

  • Henderson KM, Weaver A, Wards RL, Ball K, Lun S, Mullin C, McNatty KP (1990) Oocyte production and ovarian steroid concentrations of immature rats in response to some commercial gonadotrophin preparations. Reprod Fertil Dev 2:671–682

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi M, Ito K, Sekimoto A, Hochi S, Ueda M (2001) Production of transgenic rats using young Sprague-Dawley females treated with PMSG and hCG. Exp Anim 50:365–369

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi M, Kato M, Ishikawa A, Kaneko R, Yagi T, Hochi S (2005) Factors affecting production of transgenic rats by ICSI-mediated DNA transfer: effects of sonication and freeze-thawing of spermatozoa, rat strains for sperm and oocyte donors, and different constructs of exogenous DNA. Mol Repro Dev 70:422–428

    Article  CAS  Google Scholar 

  • Hochi S, Ninomiya T, Honman M, Yuki A (1991) Successful production of transgenic rats. Anim Biotech 1:175–184

    Google Scholar 

  • Iannaccone P, Galat V (2002) Production of transgenic rats. In: Pinkert CA (ed) Transgenic animal technology. Academic Press, New York, (pp.235–250)

    Google Scholar 

  • Ishigame H, Medan MS, Watanabe G, Shi Z, Kish H, Arai KY, Taya K (2004) A new alternative method for superovulation using passive immunization against inhibin in adult rats. Biol Reprod 71:236–243

    Article  PubMed  CAS  Google Scholar 

  • Kisseberth WC, Brettingen NT, Lohse JK, Sandgren EP (1999) Ubiquitous expression of marker transgenes in mice and rats. Dev Biol 214: 128–138

    Article  PubMed  CAS  Google Scholar 

  • Kon H, Tohei A, Hokao R, Shinoda M (2005) Estrous cycle stage-independent treatment of PMSG and hCG can induce superovulation in adult Wistar-Imamichi rats. Exp Anim 54:185–187

    Article  PubMed  CAS  Google Scholar 

  • Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline Transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295:868–872

    Article  PubMed  CAS  Google Scholar 

  • Long JA, Evans HM (1922) The Oestrous Cycle in the rat and its associated phenomena. University of California Press, Berkeley

    Google Scholar 

  • Maurer RA, Erwin CR, Donelson JE (1981) Analysis of 5′ flanking sequences and intron-exon boundaries of the rat prolactin gene. J Biol Chem 256:10524–10528

    PubMed  CAS  Google Scholar 

  • Michalkiewicz M, Michalkiewicz T (2000) Developing transgenic neuropeptide Y rats. Methods Mol Biol 153:73–89

    PubMed  CAS  Google Scholar 

  • Mukumoto S, Mori S, Ishikawa H (1995) Efficient induction of superovulation in adult rats by PMSG and HCG. Exp Anim 44:111–118

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer A (2004) Lentiviral transgenesis. Transgenic Res 13:513–522

    Article  PubMed  CAS  Google Scholar 

  • Popova E, Krivokharchenko A, Ganten D, Bader M (2002) Comparison between PMSG- and FSH- induced superovulation for the generation of transgenic rats. Mol Reprod Dev 63:177–182

    Article  PubMed  CAS  Google Scholar 

  • Popova E, Bader M, Krivokharchenko A (2005) Strain differences in superovulatory response, embryo development and efficiency of transgenic rat production. Transgenic Res 14:729–738

    Article  PubMed  CAS  Google Scholar 

  • Ramos SD, Lee JM, Peuler JD (2001) An inexpensive meter to measure differences in electrical resistance in the rat vagina during the ovarian cycle. J Appl Physiol 91:667–670

    PubMed  CAS  Google Scholar 

  • Rouleau AMJ, Kovacs PR, Kunz HW, Armstrong DT (1993) Decontamination of rat embryos and transfer to specific pathogen-free recipients for the production of a breeding colony. Lab Animal Sci 43:611–615

    CAS  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer- directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Igarashi Y, Hakamata Y, Murakami T, Kaneko T, Takahashi M, Seo N, Kobayashi E (2003) Establishment of alb-DsRed2 transgenic rat for liver regeneration research. Biochem Biophys Res Comm 311:478–481

    Article  PubMed  CAS  Google Scholar 

  • Sotomaru Y, Kamisako T, Hioki K (2005) Estrous stage- and animal age-independent superovulation in the BrlHan: WIST@Jcl(GALAS) rat. Exp Anim 54: 137–141

    Article  PubMed  CAS  Google Scholar 

  • Spearow JL, Erickson RP, Edwards T, Herbon L (1991) The effect of H-2 region and genetic background on hormone-induced ovulation rate, puberty, and follicular number in mice. Genet Res 57:41–49

    Article  PubMed  CAS  Google Scholar 

  • Stickrod G (1979) Ketamine/xylazine anesthesia in the pregnant rat. J Am Vet Med Assoc 175:952–953

    PubMed  CAS  Google Scholar 

  • Swanson ME, Hughes TE, St. Denny I, France DS, Patternitit JR Jr, Tapparelli C, Gfeller P, Bürki K (1992) High level expression of human apolipoprotein A-I in transgenic rats raises total serum high density lipoprotein cholesterol and lowers rat apolipoprotein A-I. Transgenic Res 1:142–147

    PubMed  CAS  Google Scholar 

  • Tesson L, Cozzi J, Ménoret S, Rémy S, Usal C, Fraichard A, Anegon I (2005) Transgenic modifications of the rat genome. Transgenic Res 14:531–546

    Article  PubMed  CAS  Google Scholar 

  • van den Brandt J, Wang D, Kwon S-H, Heinkelein M, Reichardt HM (2004) Lentivirally generated eGFP-transgenic rats allow efficient cell tracking in vivo. Genesis 39:94–99

    Article  PubMed  CAS  Google Scholar 

  • Vaughan DK, Coulibaly SF, Darrow RM, Organisciak DT (2003) A morphometric study of light-induced damage in transgenic rat models of retinitis pigmentosa. Invest Ophthalmol Vis Sci 44:848–855

    Article  PubMed  Google Scholar 

  • Vercauteren FG, Clerens S, Roy L, Hamel N, Arckens L, Vandesande F, Alhonen L, Janne J, Szyf M, Cuello AC (2004) Early dysregulation of hippocampal proteins in transgenic rats with Alzheimer’s disease-linked mutations in amyloid precursor protein and presenilin 1. Mol Brain Res 132:241–59

    Article  PubMed  CAS  Google Scholar 

  • Waller SJ, Ho M-Y, Murphy D (1995) Production of transgenic rodents by microinjection of cloned DNA in fertilized one-cell eggs. In: Glover DM and Hames BD (eds) DNA cloning, vol. 4, Oxford University Press, Oxford, pp 184–229

  • Walton EA, Armstrong DT (1983) Oocyte normality after superovulation in immature rats. J Reprod Fert 67:309–314

    Article  CAS  Google Scholar 

  • Watson PA, Kim K, Chen KS, Gould MN (2002) Androgen-dependent mammary carcinogenesis in rats transgenic for the Neu proto-oncogene. Cancer Cell 2:67–79

    Article  PubMed  CAS  Google Scholar 

  • Wharram BL, Goyal M, Wiggins JE, Sanden SK, Hussain S, Filipiak WE, Saunders TL, Dysko RC, Kohno K, Holzman LB, Wiggins RC (2005) Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol 16:2941–2952

    Article  PubMed  CAS  Google Scholar 

  • Wisløff U, Najjar SM, Ellingsen ø, Haram PM, Swoap S, Al-Share Q, Fernström M, Rezaei K, Lee SJ, Koch LG, Britton SL (2005) Cardiovascular risk factors emerge after artificial selection for low aerobic capacity. Science 307:418–420

    Article  PubMed  CAS  Google Scholar 

  • Yang XZ, Han MS, Niwa K, Iannaccone PM (2004) Factors required during preculture of rat oocytes soon after sperm penetration for promoting their further development in a chemically defined medium. J Reprod Dev 50:533–540

    Article  PubMed  Google Scholar 

  • Zhou Y, Galat V, Garton R, Taborn G, Niwa K, Iannaccone P (2003) Two-phase chemically defined culture system for preimplantation rat embryos. Genesis 36:129–133

    Article  PubMed  Google Scholar 

  • Zucker LM, Zucker TF (1961) Fatty, a new mutation in the rat. J Hered 52:275–278

    Google Scholar 

Download references

Acknowledgments

We thank Colin Bishop, Yuji Ikeno, Sean Morrison, R. Scott Turner, Robert Thompson, and Roger Wiggins for providing transgenes and genotyping. We thank Tina Hutchinson and Corey Ziebell for their help managing the rat colonies and Maggie Van Keuren for C57BL/6J microinjection data. We thank Anne Rouleau for advice on mechanical stimulation. T.S. thanks Joe Warren for introducing him to the making of transgenic rats. Support was received from NIH grants CA46592, AR20557, DK34933, and AG013283. Additional support was provided by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (Grant 085P1000815).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. Saunders.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filipiak, W.E., Saunders, T.L. Advances in transgenic rat production. Transgenic Res 15, 673–686 (2006). https://doi.org/10.1007/s11248-006-9002-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-006-9002-x

Keywords

Navigation