Skip to main content
Log in

Stabilized catalyst comprising nickel and supported 12-tungstophosphoric acid: synthesis, characterization and aqueous-phase Suzuki–Miyaura cross-coupling

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

This work describes a simple impregnation and soaking method for designing of stabilized nickel exchanged supported 12-tungstophosphoric acid, its characterization and use as a heterogeneous catalyst for carrying out Suzuki–Miyaura (SM) cross-coupling in aqueous medium. The influence of various reaction parameters was screened for maximum conversion, and the catalyst was found to exhibit an excellent activity (89% conversion) with a very small amount of active species (0.26 mol% of Ni) under mild conditions. The catalyst was retrieved by centrifugation, reactivated by heating at 100 °C only and reused without exhibiting any significant change in conversion up to three catalytic runs. The stability of the regenerated catalyst was confirmed by FT-IR, XPS and TEM analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Muto K, Yamaguchi J, Musaev DG, Itami K (2015) Nat Commun 6:7508

    Article  Google Scholar 

  2. Patel A, Patel A (2022) Catal Lett 152:895

    Article  CAS  Google Scholar 

  3. Patel A, Patel A (2018) Catal Lett 148:3534

    Article  CAS  Google Scholar 

  4. Xiang M, Ghosh A, Krische MJ (2021) J Am Chem Soc 143:2838

    Article  CAS  Google Scholar 

  5. Fernández E, Rivero-Crespo MA, Domínguez I, Rubio-Marqués P, Oliver-Meseguer J, Liu L, Cabrero-Antonino M, Gavara R, Hernández-Garrido JC, Boronat M, Leyva-Pérez A, Corma A (2019) J Am Chem Soc 141:1928

    Article  Google Scholar 

  6. Wada Y, Takehara T, Suzuki T, Aoki S, Hibi T, Sako M, Tsujino H, Tsutsumi Y, Arisawa M (2021) Organometallics 40:2901

    Article  CAS  Google Scholar 

  7. Turan N, Buldurun K, Çolak N, Özdemir İ (2019) Open Chem J 17:571

    Article  CAS  Google Scholar 

  8. Ludwig JR, Simmons EM, Wisniewski SR, Chirik PJ (2021) Org Lett 23:625

    Article  CAS  Google Scholar 

  9. Li Y, Nie W, Chang Z, Wang J-W, Lu X, Fu Y (2021) Nat Catal 4:901

    Article  CAS  Google Scholar 

  10. Weires NA, Baker EL, Garg NK (2015) Nat Chem 8:75

    Article  Google Scholar 

  11. Folsom SK, Ivey DJ, McNair FS, Siamaki AR (2021) Catalysts 11:495

    Article  CAS  Google Scholar 

  12. Sen A, Dhital RN, Sato T, Ohno A, Yamada YMA (2020) ACS Catal 10:14410

    Article  CAS  Google Scholar 

  13. Sawatzky RS, Stradiotto M (2018) Synlett 29:799

    Article  CAS  Google Scholar 

  14. Malan FP, Singleton E, van Rooyen PH, Landman M (2016) J Organomet Chem 813:7

    Article  CAS  Google Scholar 

  15. Mastalir M, Stöger B, Pittenauer E, Allmaier G, Kirchner K (2016) Org Lett 18:3186

    Article  CAS  Google Scholar 

  16. Lei X, Obregon KA, Alla J (2013) Appl Organomet Chem 27:419

    Article  CAS  Google Scholar 

  17. Wu Z-C, Lu Y-N, Ren Y-M, Chen Z-M, Tao T-X (2013) J Chem Res 37:451

    Article  CAS  Google Scholar 

  18. Wu L, Ling J, Wu Z-Q (2011) Adv Synth Catal 353:1452

    Article  CAS  Google Scholar 

  19. Lipshutz BH, Frieman BA, Lee C-T, Lower A, Nihan DM, Taft BR (2006) Chem: Asian J 1:417

    CAS  Google Scholar 

  20. Yi X, Chen K, Guo J, Chen W, Chen W (2020) Adv Synth Catal 362:4373

    Article  CAS  Google Scholar 

  21. Tran VT, Li Z-Q, Apolinar O, Derosa J, Joannou MV, Wisniewski SR, Eastgate MD, Engle KM (2020) Angew Chem Int Ed 59:7409

    Article  CAS  Google Scholar 

  22. Dindarloo Inaloo I, Majnooni S, Eslahi H, Esmaeilpour M (2020) Appl Organomet Chem 34:e5662

    Article  CAS  Google Scholar 

  23. Dindarloo Inaloo I, Majnooni S, Eslahi H, Esmaeilpour M (2020) ACS Omega 5:7406

    Article  CAS  Google Scholar 

  24. Buchspies J, Rahman MM, Szostak M (2020) Catalysts 10

  25. Rhule JT, Hill CL, Judd DA, Schinazi RF (1998) Chem Rev 98:327

    Article  CAS  Google Scholar 

  26. Pope MT, Jeannin Y, Fournier M (1983) Heteropoly and isopoly oxometalates, Springer

  27. Yamase T, Pope MT (2006). Polyoxometalate chemistry for nano-composite design, Springer Science & Business Media

  28. Patel A, Patel A (2021) RSC Adv 11:8218

    Article  CAS  Google Scholar 

  29. Patel A, Patel A (2021) Catal Lett 151:803

    Article  CAS  Google Scholar 

  30. Pathan S, Patel A (2013) Dalton Trans 42:11600

    Article  CAS  Google Scholar 

  31. Patel A, Patel A (2019) RSC Adv 9:1460

    Article  CAS  Google Scholar 

  32. Vogel AI, Jeffery GH (1989) Vogel's textbook of quantitative chemical analysis, Longman Scientific & Technical,

  33. Patel S, Purohit N, Patel A (2003) J Mol Catal A: Chem 192:195

    Article  CAS  Google Scholar 

  34. Grosvenor AP, Biesinger MC, Smart RSC, McIntyre NS (2006) Surf Sci 600:1771

    Article  CAS  Google Scholar 

  35. Villanneau R, Roucoux A, Beaunier P, Brouri D, Proust A (2014) RSC Adv 4:26491

    Article  CAS  Google Scholar 

  36. Patel A, Patel A (2019) Catal Lett 149:1476

    Article  CAS  Google Scholar 

  37. Rana S, Parida KM (2012) Catal. Sci Technol 2:979

    CAS  Google Scholar 

  38. Miyaura N, Suzuki A (1995) Chem Rev 95:2457

    Article  CAS  Google Scholar 

  39. Das P, Linert W (2016) Coord Chem Rev 311:1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Department of Chemistry, The Maharaja Sayajirao University of Baroda, for BET surface area analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali Patel.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 188 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, A., Patel, A. Stabilized catalyst comprising nickel and supported 12-tungstophosphoric acid: synthesis, characterization and aqueous-phase Suzuki–Miyaura cross-coupling. Transit Met Chem 47, 249–255 (2022). https://doi.org/10.1007/s11243-022-00507-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-022-00507-6

Navigation