Skip to main content
Log in

Four bimetallic ammonium formate frameworks: structures, magnetism and dielectricity

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The synthesis, crystal structures, magnetic and dielectric properties of four ammonium bimetallic formate frameworks [AI][GaIIICoII(HCOO)6] for AI = CH3NH3+ (1), (CH3)2NH2+ (2), CH3CH2NH3+ (3) and (CH3CH2)2NH2+ (4) have been reported. They are isomorphic and crystallize in the trigonal P\(\bar{3}\)1c space group at both 110 and 293 K. The structures possess [GaIIICoII(HCOO)6] anionic metal formate frameworks of binodal (412·63)(49·66) topology, in which the disordered ammonium cations are located in the cavities. The magnetic data of complex 2 was fitted by the one-ion approximation for CoII ion with spin–orbit coupling in Oh symmetry giving λ = − 102.7 cm−1. The dielectric studies of 1 and 2 showed that the dielectric abnormality was caused by the weakening of the movement of the ammonium cations with the decrease in temperature. The activation energies for the motions of ammonium cations in 1 and 2 were determined to be 3.00 and 3.19 × 103 K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang ZM, Hu KL, Gao S, Kobayashi H (2010) Adv Mater 22:1526–1533

    Article  CAS  Google Scholar 

  2. Zhao YH, Liu S, Xiong LH, Fan HM, Wang BW, Jiang SD, Wang ZM, Gao S (2021) Sci Sin Chim 51(4):410–439

    Article  Google Scholar 

  3. Szymborska-Małek K, Trzebiatowska-Gusowska M, Mączka M, Gągor A (2016) Spectrochim Acta—Part A Mol Biomol Spectrosc 159:35–41

    Article  Google Scholar 

  4. Ptak M, Svane KL, Collings IE, Paraguassu W (2020) J Phys Chem C 124:6337–6348

    Article  CAS  Google Scholar 

  5. Trzmiel J, Sieradzki A, Pawlus S, Mączka M (2018) Mater. Sci Eng B Solid-State Mater Adv Technol 236–237:24–31

    Article  Google Scholar 

  6. Shang R, Chen S, Hu KL, Wang BW, Wang ZM, Gao S (2016) Chem Eur J 22:6199–6203

    Article  CAS  Google Scholar 

  7. Zhao JP, Han SD, Liu FC (2019) Inorg Chem 58:1184–1190

    Article  CAS  Google Scholar 

  8. Liu B, Shang R, Hu KL, Wang ZM, Gao S (2012) Inorg Chem 51:13363–13372

    Article  CAS  Google Scholar 

  9. Du XJ, Zhang LL, Li LT, Zhan LY, Li TR, Zhao JP, Liu FC (2022) Inorg Chem 61:2265–2271

    Article  CAS  Google Scholar 

  10. Viswanathan M, Bhat SG, Bera AK, Rodríguez-Carvajal J (2019) J Phys Chem C 123:18551–18559

    Article  CAS  Google Scholar 

  11. Wang K, Xiong JB, Xia B, Wang QL, Tong YZ, Ma Y, Bu XH (2018) Inorg Chem 57:537–540

    Article  CAS  Google Scholar 

  12. Wang K, Xiong JB, Xia B, Wang QL, Tong YZ, Ma Y, Wang ZM, Gao S (2018) Inorg Chem 57:3941–3947

    Article  CAS  Google Scholar 

  13. Yu Y, Shang R, Chen S, Wang BW, Wang ZM, Gao S (2017) Chem Eur J 23(41):9857–9871

    Article  CAS  Google Scholar 

  14. Zhao YH, Liu S, Wang BW, Wang ZM, Gao S (2019) Chem Eur J 25(39):9303–9314

    Article  CAS  Google Scholar 

  15. Hagen KS, Naik SG, Huynh BH, Masello A, Christou G (2009) J Am Chem Soc 131:7516–7517

    Article  CAS  Google Scholar 

  16. Zhao JP, Hu BW, Lloret F, Tao J, Yang Q, Zhang XF, Bu XH (2010) Inorg Chem 49:10390–10399

    Article  CAS  Google Scholar 

  17. Cañadillas-Delgado L, Fabelo O, Rodríguez-Velamazán JA, Lemée-Cailleau MH, Mason SA, Pardo E, Lloret F, Zhao JP, Bu XH, Simonet V, Colin CV, Rodríguez-Carvajal J (2012) J Am Chem Soc 134:19772–197781

    Article  Google Scholar 

  18. Ciupa A, Mączka M, Gągor A, Pikul A, Ptak M (2015) Dalton Trans 44:13234–13241

    Article  CAS  Google Scholar 

  19. Elwood PW (1956) Magnetochemistry. Interscience, New York

    Google Scholar 

  20. Sheldrick GM (1997) SHELXS-97. Göttingen University, Göttingen

    Google Scholar 

  21. Sheldrick GM (1997) SHELXL-97. Göttingen University, Göttingen

    Google Scholar 

  22. Zurowska B, Brzuszkiewicz A (2008) Polyhedron 27(6):1623–1630

    Article  CAS  Google Scholar 

  23. Dumestre F, Soula B, Galibert AM, Fabre PL, Bernardinelli G, Donnadieu B, Castan P (1998) J Chem Soc Dalton Trans 1998:4131–4138

    Article  Google Scholar 

  24. March R, Clegg W, Coxall RA, Cucurull-Sánchez L, Lezama L, Rojo T, González-Duarte P (2003) Inorg Chim Acta 353:129–138

    Article  CAS  Google Scholar 

  25. Herrera JM, Bleuzen A, Dromzée Y, Julve M, Lloret F, Verdaguer M (2003) Inorg Chem 42(22):7052–7059

    Article  CAS  Google Scholar 

  26. Su L, Song WC, Zhao JP, Liu FC (2016) Chem Comm 52(56):8722–8725

    Article  CAS  Google Scholar 

  27. Weng DF, Wang BW, Wang ZM, Gao S (2013) Coord Chem Rev 257(17–18):2484–2490

    Article  CAS  Google Scholar 

  28. Yang C, Wang QL, Tang GT, Wang C, Yan SP, Liao DZ (2010) J Coord Chem 63:505–514

    Article  CAS  Google Scholar 

  29. Mydosh JA (1993) Spin glasses: an experimental introduction. Taylor and Francis, London

    Google Scholar 

  30. Zheng YZ, Tong ML, Zhang WX, Chen XM (2006) Angew Chem Int Ed 45(38):6310–6314

    Article  CAS  Google Scholar 

  31. Gatteschi D, Sessoli R (2003) Angew Chem Int Ed 42(3):268–297

    Article  CAS  Google Scholar 

  32. Beltran LMC, Long JR (2005) Acc Chem Res 38(4):325–334

    Article  CAS  Google Scholar 

  33. Murugesu M, Habrych M, Wernsdorfer W, Abboud KA, Christou G (2004) J Am Chem Soc 126:4766–4767

    Article  CAS  Google Scholar 

  34. Sieradzki A, Pawlus S, Tripathy SN, Gągor A, Ptak M, Paluch M, Mączka M (2017) Dalton Trans 46(11):3681–3687

    Article  CAS  Google Scholar 

  35. Asaji T, Ashitomi K (2013) J Phys Chem C 117:10185–10190

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21771111, 21101096, and 21371104) and the Hebei Province 2020 Overseas Student Introduction Program (No. C20200317).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun Yang or Qing-Lun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Crystallographic data (excluding structure factors) for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication Nos. CCDC 2019804-2019811 for 1–4. Copies of the data can be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge CB21EZ, UK (Fax: +44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).

The online version contains supplementary material (Table S1 and S2, Fig. S1 – S3) are available at https://doi.org/10.1007.

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SW., Wang, K., Chen, D. et al. Four bimetallic ammonium formate frameworks: structures, magnetism and dielectricity. Transit Met Chem 47, 183–188 (2022). https://doi.org/10.1007/s11243-022-00502-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-022-00502-x

Navigation