Skip to main content
Log in

ADT-Type [FeFe]-hydrogenase biomimics featuring monodentate phosphines: formation, structures, and electrocatalysis

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

To further develop the diiron subsite biomimics of [FeFe]-hydrogenases, two new diiron azadithiolate (adt) complexes Fe2(μ-adtNPh)(CO)5(Ph2PX) (X = NHBut, 1 and P(O)Ph2, 2) featuring monodentate phosphines were unexpectedly produced by the Me3NO-induced decarbonylating reactions of all-CO diiron precursor Fe2(μ-adtNPh)(CO)6 (A, adtNPh = (SCH2)2NPh) with different aminodiphosphines (Ph2P)2NR (R = But and C6H4Cl-p) in MeCN at ambient temperature. The as-obtained complexes 1 and 2 have been fully characterized by means of elemental analysis, FT-IR, (1H, 31P) NMR spectroscopies and further confirmed by X-ray crystallography. At the same time, the electrochemical and electrocatalytic behaviors of 1 and 2 have been studied and compared in the absence or presence of acetic acid (HOAc) as a proton source by cyclic voltammetry (CV), suggesting that they can be considered as the active biomimetic electrocatalysts for proton reduction to hydrogen (H2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Scheme 3

Similar content being viewed by others

References

  1. Li YL, Rauchfuss TB (2016) Chem Rev 116:7043–7077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lubitz W, Ogata H, Rüdiger O, Reijerse E (2014) Chem Rev 114:4081–4148

    Article  CAS  PubMed  Google Scholar 

  3. Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) Science 282:1853–1858

    Article  CAS  PubMed  Google Scholar 

  4. Nicolet Y, Piras C, Legrand P, Hatchikian EC, Fontecilla-Camps JC (1999) Structure 7:13–23

    Article  CAS  PubMed  Google Scholar 

  5. Esselborn J, Lambertz C, Adamska-Venkatesh A, Simmons T, Berggren G, Nothl J, Siebel J, Hemschemeier A, Artero V, Reijerse E, Fontecave M, Lubitz W, Happe T (2013) Nat Chem Biol 9:607–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lambertz C, Chernev P, Klingan K, Leidel N, Sigfridsson KGV, Happe T, Haumann M (2014) Chem Sci 5:1187–1203

    Article  CAS  Google Scholar 

  7. Erdem ÖF, Schwartz L, Stein M, Silakov A, Kaur-Ghumaan S, Huang P, Ott S, Reijerse EJ, Lubitz W (2011) Angew Chem Int Ed 50:1439–1443

    Article  CAS  Google Scholar 

  8. Bethel RD, Darensbourg MY (2013) Nature 499:40–41

    Article  CAS  PubMed  Google Scholar 

  9. Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta M, Gambarelli S, Mouesca JM, Reijerse E, Lubitz W, Happe T, Artero V, Fontecave M (2013) Nature 499:66–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Capon JF, Gloaguen F, Pétillon FY, Schollhammer P, Talarmin J (2009) Coord Chem Rev 253:1476–1494

    Article  CAS  Google Scholar 

  11. Tard C, Pickett CJ (2009) Chem Rev 109:2245–2274

    Article  CAS  PubMed  Google Scholar 

  12. Gao S, Fan WH, Liu Y, Jiang DY, Duan Q (2020) Int J Hyrogen Energ 45:4503–4527

    Google Scholar 

  13. Kleinhaus JT, Wittkamp F, Yadav S, Siegmund D (2021) Apfel UP Chem Soc Rev 50:1688–1784

    Google Scholar 

  14. Unwin DG, Ghosh S, Ridley F, Richmond MG, Holt KB, Hogarth G (2019) Dalton Trans 48:6174–6190

    Article  CAS  PubMed  Google Scholar 

  15. Zhong W, Wu L, Jiang WD, Li YL, Mookan N, Liu XM (2019) Dalton Trans 48:13711–13718

    Article  CAS  PubMed  Google Scholar 

  16. Lü S, Huang HL, Zhang RF, Ma CL, Li QL, He J, Yang J, Li T, Li YL (2020) Inorg Chem Front 7:2352–2361

    Article  Google Scholar 

  17. Zhao PH, Li JR, Ma ZY, Han HF, Qu YP, Lu BP (2021) Inorg Chem Front 8:2107–2118

    Article  CAS  Google Scholar 

  18. Ghosh S, Hogarth G, Hollingsworth N, Holt KB, Richards I, Richmond MG, Sanchez BE, Unwin D (2013) Dalton Trans 42:6775–6792

    Article  CAS  PubMed  Google Scholar 

  19. Song LC, Wang YX, Xing XK, Ding SD, Zhang LD, Wang XY, Zhang HT (2016) Chem Eur J 22:16304–16314

    Article  CAS  PubMed  Google Scholar 

  20. Zhao PH, Ma ZY, Hu MY, He J, Wang YZ, Jing XB, Chen HY, Li YL (2018) Organometallics 37:1280–1287

    Article  CAS  Google Scholar 

  21. Zhao PH, Hu MY, Li JR, Ma ZY, Wang YZ, He J, Li YL, Liu XF (2019) Organometallics 38:385–394

    Article  CAS  Google Scholar 

  22. Hu MY, Lin Y, Li JR, Wang YH, Zhao PH, Liu XF (2019) Appl Organomet Chem 33:e4949

    Article  Google Scholar 

  23. Li JR, Hu MY, Zhao PH, Tian WJ, Xu TT, Li YL (2020) Inorg Chim Acta 505:119493

    Article  CAS  Google Scholar 

  24. Hu MY, Zhao PH, Li JR, Gu XL, Jing XB, Liu XF (2020) Appl Organomet Chem 34:e5523

    CAS  Google Scholar 

  25. Wang Z, Jiang WF, Liu JH, Jiang WN, Wang Y, Åkermark B, Sun L (2008) J Organomet Chem 693:2828–2834

    Article  CAS  Google Scholar 

  26. Liu XF, Xiao XW (2011) J Organomet Chem 696:2767–2771

    Article  CAS  Google Scholar 

  27. Jing XB, Ma D, Zhao PH, Li YL (2016) Transit Met Chem 41:759–766

    Article  CAS  Google Scholar 

  28. Li YL, Ma ZY, He J, Hu MY, Zhao PH (2017) J Organomet Chem 851:14–21

    Article  CAS  Google Scholar 

  29. Hu MY, Li JR, Jing XB, Tian H, Zhao PH (2019) Inorg Chim Acta 495:119021

    Article  CAS  Google Scholar 

  30. Li JR, Hu MY, Lü S, Gu XL, Jing XB, Zhao PH (2020) Appl Organomet Chem 34:e5929

    CAS  Google Scholar 

  31. Henry RM, Shoemaker RK, Newell RH, Jacobsen GM, DuBios MR, DuBios DL (2005) Organometallics 24:2481–2491

    Article  CAS  Google Scholar 

  32. Henry RM, Shoemaker RK, DuBios MR, DuBios DL (2006) J Am Chem Soc 128:3002–3010

    Article  CAS  PubMed  Google Scholar 

  33. Thapa I, Gambarotta S, Korobkov I, Duchateau R, Kulangara SV, Chevalier R (2010) Organometallics 29:4080–4089

    Article  CAS  Google Scholar 

  34. Blann K, Bollmann A, Bod H, Dixon JT, Killian E, Nongodlwana P, Maumela MC, Maumela H, McConnell AE, Morgan DH, Overett MJ, Prétorius M, Kuhlmann S, Wasserscheid P (2007) J Catal 249:244–249

    Article  CAS  Google Scholar 

  35. Li HX, Rauchfuss TB (2002) J Am Chem Soc 124:726–727

    Article  CAS  PubMed  Google Scholar 

  36. Sheldrick GM (2008) Acta Cryst A64:112–122

    Article  Google Scholar 

  37. Liu XF (2011) Inorg Chim Acta 378:338–341

    Article  CAS  Google Scholar 

  38. Song LC, Cao M, Du ZQ, Feng ZH, Ma Z, Song HB (2014) Eur J Inorg Chem 2014:1886–1895

    Article  CAS  Google Scholar 

  39. Gloaguen F, Lawrence JD, Schmidt M, Wilson SR, Rauchfuss TB (2001) J Am Chem Soc 123:12518–12527

    Article  CAS  PubMed  Google Scholar 

  40. Zhao PH, Liu SN, Liu YF, Liu YQ (2014) J Clust Sci 25:1331–1340

    Article  CAS  Google Scholar 

  41. Liu XF, Gao HQ (2014) J Clust Sci 25:495–503

    Article  CAS  Google Scholar 

  42. Mejia-Rodriguez R, Chong D, Reibenspies JH, Soriaga MP, Darensbourg MY (2004) J Am Chem Soc 126:12004–12014

    Article  CAS  PubMed  Google Scholar 

  43. Felton GAN, Mebi CA, Petro BJ, Vannucci AK, Evans DH, Glass RS, Lichtenberger DL (2009) J Organomet Chem 694:2681–2699

    Article  CAS  Google Scholar 

  44. Tatematsu R, Inomata T, Ozawa T, Masuda H (2016) Angew Chem Int Ed 55:5247–5250

    Article  CAS  Google Scholar 

  45. Hemming EB, Chan B, Turner P, Corcilius L, Price JR, Gardiner MG, Masters AF, Maschmeyer T (2018) Appl Catal B Environ 223:234–241

    Article  CAS  Google Scholar 

  46. Zhao PH, Hu MY, Li JR, Wang YZ, Lu BP, Han HF, Liu XF (2020) Electrochim Acta 353:136615

    Article  CAS  Google Scholar 

  47. Fourmond V, Jacques PA, Fontecave M, Artero V (2010) Inorg Chem 49:10338–10347

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Research Project supported by Shanxi Scholarship Council of China (No. 2021-119) and Zhejiang Provincial Natural Science Foundation of China (No. LY19B020002) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu-Feng Liu or Pei-Hua Zhao.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 886 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, FY., Hu, MY., Gu, XL. et al. ADT-Type [FeFe]-hydrogenase biomimics featuring monodentate phosphines: formation, structures, and electrocatalysis. Transit Met Chem 46, 645–653 (2021). https://doi.org/10.1007/s11243-021-00482-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-021-00482-4

Navigation