Skip to main content
Log in

Structure and magnetic properties of a serendipitously synthesized copper(II) complex: [Cu(3-Br-2-pyone)6](ClO4)2

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Hexakis(3-bromo-2(1H)-pyridone)copper(II) perchlorate was prepared. Crystals and powdered bulk samples were characterized using IR, single-crystal and powder X-ray diffraction, combustion analysis, EPR and temperature-dependent magnetic susceptibility data. The complex crystallizes in the triclinic space group P\(\bar{1}\) and comprises a Jahn–Teller distorted Cu(II)–O6 coordination sphere with the ligands coordinated via the pyridone O-atoms. EPR and variable temperature susceptibility measurements show that the complex is well isolated magnetically in the lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cornia A, Mannini M, Sessoli R, Gatteschi D (2019) Eur J Inorg Chem 2019:552–568

    CAS  Google Scholar 

  2. Stamatatos TC, Rentschler E (2019) Chem Commun 55:11–26

    CAS  Google Scholar 

  3. Cosquer G, Shen Y, Almeida M, Yamashita M (2018) Dalton Trans 47:7616–7627

    CAS  PubMed  Google Scholar 

  4. Lu J, Guo M, Tang J (2017) Chem Asian J 12:2772–2779

    CAS  PubMed  Google Scholar 

  5. Journaux Y, Ferrando-Soria J, Pardo E, Ruiz-Garcia R, Julve M, Lloret F, Cano J, Li Y, Lisnard L, Yu P (2018) Eur J Inorg Chem 2018:228–247

    CAS  Google Scholar 

  6. Coulon C, Pianet V, Urdampilleta M, Clerac R (2015) Struct Bond 164:143–184

    CAS  Google Scholar 

  7. Zhang W-X, Ishikawa R, Breedlove B, Yamashita M (2013) RSC Adv 3:3772–3798

    CAS  Google Scholar 

  8. Felser C, Wollmann L, Chadov S, Fecher GH, Parkin SSP (2015) APL Mater 3:041518/1-8

    Google Scholar 

  9. Martinez-Lillo J, Faus J, Lloret F, Julve M (2015) Coord Chem Rev 289–290:215–237

    Google Scholar 

  10. Cavlovic D, Juricek M (2019) Chimia 73:313–316

    CAS  PubMed  Google Scholar 

  11. Sieklucka B, Pinkowicz D (eds) (2017) Molecular magnetic materials: concepts and applications. Wiley, Weinheim

    Google Scholar 

  12. Winpenny R (ed) (2012) Molecular cluster magnets. World Scientific Publishing Co. Pte. Ltd., Singapore

    Google Scholar 

  13. Adarsh NN, Dirtu MM, Guionneau P, Devlin E, Sanakis Y, Howard JAK, Chattopadhyay B, Garci Y (2019) Eur J Inorg Chem 2019:585–591

    CAS  Google Scholar 

  14. Moraes LC, de Souza GP, Fajardo HV, Luz SC, Alvarez E, Lloret F, Ribeiro-Viana RM, Rojo J, Stumpf HO, Figueiredo RC, Correa RS (2019) Inorg Chim Acta 489:93–99

    CAS  Google Scholar 

  15. Li H, Pang J, Chen L, Zhao J (2019) Inorg Chem Commun 99:119–125

    CAS  Google Scholar 

  16. Gao Y-L, Inoue K (2019) Trans Met Chem 44:283–292

    CAS  Google Scholar 

  17. Mulrooney DZT, Clements JE, Ericsson DJ, Price JR, Kuehne IA, Coles SJ, Kepert CJ, Keene TD (2018) Eur J Inorg Chem 2018:5223–5228

    CAS  Google Scholar 

  18. Zhang B-S, Wu C-S, Qiu J-P, Li Y-X, Liu Z-X (2014) J Coord Chem 67:787–796

    CAS  Google Scholar 

  19. Mocanu MI, Shova S, Lloret F, Julve M, Andruh M (2018) J Coord Chem 71:693–706

    CAS  Google Scholar 

  20. Mucha P, Malecka M, Kupcewicz B, Lux K, Dolega A, Jezierska J, Budzisz E (2018) Polyhedron 153:181–196

    CAS  Google Scholar 

  21. Wang X-L, Li Y-X, Yang S-L, Zhang C-X, Wang Q-L (2017) J Coord Chem 70:487–496

    CAS  Google Scholar 

  22. Das M, Canaj AB, Bertolasi V, Murrie M, Ray D (2018) Dalton Trans 47:17160–17176

    CAS  PubMed  Google Scholar 

  23. Dermitzaki D, Bistola O, Pissas M, Psycharis V, Sanakis Y, Raptopoulou CP (2018) Polyhedron 150:47–53

    CAS  Google Scholar 

  24. Kukalenko SS, Struchkov Y, Shestakova SI, Tsybulevskii AG, Batsanov AS, Nazarova EB (1983) Koord Khim (Russ.) 9:306–311

    CAS  Google Scholar 

  25. White JM, McInnis L, Donnelly PS (2014) CSD communication refcode: KORDEC

  26. Olmstead MM, Marlin DS, Mascharak PK (2015) CSD communication refcode: RUDRIT

  27. Kovacik I, Kozisek J, Hanusik J, Langfelderova H, Voronkova VK, Mosina LV, Yablokov Y (1992) J Coord Chem 26:45–57

    CAS  Google Scholar 

  28. Dubois RJ, Landee CP, Rademeyer M, Turnbull MM (2019) J Coord Chem 72:1785–1809

    CAS  Google Scholar 

  29. Dubois RJ, Landee CP, Rademeyer M, Turnbull MM (2018) J Coord Chem 71:3534–3553

    CAS  Google Scholar 

  30. Landee CP, Monroe JC, Kotarba R, Polson M, Wikaira JL, Turnbull MM (2018) J Coord Chem 71:3342–3363

    CAS  Google Scholar 

  31. Monroe JC, Turnbull MM (2019) Eur Chem Bull 8:203–206

    CAS  Google Scholar 

  32. Monk MC, Landee CP, Turnbull MM, Wikaira JL (2016) Eur Chem Bull 5:54–59

    CAS  Google Scholar 

  33. Selmani V, Landee CP, Turnbull MM, Wikaira JL, Xiao F (2010) Inorg Chem Commun 13:1399–1401

    CAS  Google Scholar 

  34. Taylor D (1975) Aust J Chem 28:2615–2622

    CAS  Google Scholar 

  35. Breeze SR, Wang S (1993) Inorg Chem 32:5981–5989

    CAS  Google Scholar 

  36. Yuan JX, Hu ML, Cheng YQ, Chen LC, Ng SW (2002) Acta Cryst Sect C 58:m270–m272

    Google Scholar 

  37. Reedijk J (1969) Recl Trav Chim Pays-Bas 88:1139

    CAS  Google Scholar 

  38. CrysAlisPro Oxford Diffraction Ltd., Version 1.171.39.46e (2018)

  39. Sheldrick GM (2008) Acta Cryst A 64:112–122

    CAS  Google Scholar 

  40. Sheldrick GM (2015) Acta Cryst C 71:3–8

    Google Scholar 

  41. Carlin RL (1986) Magnetochemistry. Springer, New York

    Google Scholar 

  42. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) Chem Rev 116:2478–2601

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Landee CP, Turnbull MM (2014) J Coord Chem 67:375–439

    CAS  Google Scholar 

  44. Stoll S, Schweiger A (2006) J Mag Res 178:42–55

    CAS  Google Scholar 

  45. Bhandari A, Maji RC, Mishra S, Kumar A, Barman SK, Das PP, Ghiassi KB, Olmstead MM, Patra AK (2018) Inorg Chem 57:13713–13727

    CAS  PubMed  Google Scholar 

  46. Chatterjee SK, Roy S, Barman SK, Maji RC, Olmstead MM, Patra AK (2012) Inorg Chem 51:7625–7635

    CAS  PubMed  Google Scholar 

  47. Blackman AG, Buckingham DA, Clark CR, Simpson J (1991) J Chem Soc Dalton Trans 3031–3041

  48. Jiang J-J, Chen L, Zhou J, Shen X, Xu Y, Zhu D-R (2012) Wuji Huaxue Xuebao (Chin.). Chin J Inorg Chem 28:1940–1944

    CAS  Google Scholar 

  49. Wen H-R, Qi T-T, Liu S-J, Liu C-M, Tang Y-Z, Chen J-L (2015) Polyhedron 85:894–899

    CAS  Google Scholar 

  50. Ishida AK (2018) CSD communication. Refcode: XIFKIJ

  51. Bencini A, Gatteschi D (2012) EPR of exchange coupled systems. Mineola, New York

    Google Scholar 

Download references

Acknowledgements

FEW is grateful for support from PCI Synthesis Inc. (now SEQENS) and the Dr. Bernard’38 and Vera Wantman Kopelman’40 Endowed Science Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M. Turnbull.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11243_2019_375_MOESM1_ESM.docx

Powder X-ray diffraction patterns for 1 (calculated and experimental, Figure S1) and χ(T) for compound 1 (Figure S2). (DOCX 274 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Witkos, F.E., Monroe, J.C., Landee, C.P. et al. Structure and magnetic properties of a serendipitously synthesized copper(II) complex: [Cu(3-Br-2-pyone)6](ClO4)2. Transit Met Chem 45, 237–243 (2020). https://doi.org/10.1007/s11243-019-00375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-019-00375-7

Navigation