Skip to main content
Log in

Diiron butane-2,3-dithiolate complexes with monophosphine coligands: synthesis, characterization, and electrochemistry

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

In this paper, three diiron butane-2,3-dithiolate complexes [Fe2(CO)5L{µ-SCH(CH3)CH(CH3)S}] [L = P(4-C6H4F)3, 2; P(4-C6H4OCH3)3, 3; P(3-C6H4Cl)3, 4] have been synthesized by CO substitution of the starting complex [Fe2(CO)6{µ-SCH(CH3)CH(CH3)S}] (1) with the corresponding monophosphine coligands in the presence of Me3NO·2H2O as the decarbonylating agent in 61‒74% yields. These complexes have been characterized by elemental analysis, IR, NMR spectroscopy, and single-crystal X-ray diffraction analysis. In addition, electrochemical studies revealed that these complexes can catalyze the reduction of proton to H2 in the presence of acetic acid under the electrochemical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tard C, Pickett CJ (2009) Chem Rev 109:2245

    CAS  PubMed  Google Scholar 

  2. Lubitz W, Ogata H, Rüdiger O, Reijerse E (2014) Chem Rev 114:4081

    CAS  PubMed  Google Scholar 

  3. Rauchfuss TB (2015) Acc Chem Res 48:2107

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pandey IK, Natarajan M, Kaur-Ghumaan S (2015) J Inorg Biochem 143:88

    CAS  PubMed  Google Scholar 

  5. Li Y, Rauchfuss TB (2016) Chem Rev 116:7043

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cammack R (1999) Nature 397:214

    CAS  PubMed  Google Scholar 

  7. Frey M (2002) ChemBioChem 3:153

    CAS  PubMed  Google Scholar 

  8. Lemon BJ, Peter JW (1999) Biochemistry 38:12969

    CAS  PubMed  Google Scholar 

  9. Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) Science 282:1853

    CAS  PubMed  Google Scholar 

  10. Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Structure 7:13

    CAS  PubMed  Google Scholar 

  11. Fan H, Hall MB (2001) J Am Chem Soc 123:3828

    CAS  PubMed  Google Scholar 

  12. Lawrence JD, Li H, Rauchfuss TB, Bénard M, Rohmer MM (2001) Angew Chem Int Ed 40:1768

    CAS  Google Scholar 

  13. Cloirec AL, Best SP, Borg S, Davies SC, Evans DJ, Hughes DL, Pickett CJ (1999) Chem Commun 2285

  14. George SJ, Cui Z, Razavet M, Pickett CJ (2002) Chem Eur J 8:4037

    CAS  PubMed  Google Scholar 

  15. Schmidt M, Contakes SM, Rauchfuss TB (1999) J Am Chem Soc 121:9736

    CAS  Google Scholar 

  16. Lyon EJ, Georgakaki IP, Reibenspies JH, Darensbourg MY (2001) J Am Chem Soc 123:3268

    CAS  PubMed  Google Scholar 

  17. Rauchfuss TB, Contakes SM, Hsu SCN, Reynolds MA, Wilson SR (2001) J Am Chem Soc 123:6933

    CAS  PubMed  Google Scholar 

  18. Gao W, Ekström J, Liu J, Chen C, Eriksson L, Weng L, Åkermark B, Sun L (2007) Inorg Chem 46:1981

    CAS  PubMed  Google Scholar 

  19. Capon JF, Hassnaoui SE, Gloaguen F, Schollhammer P, Talarmin J (2005) Organometallics 24:2020

    CAS  Google Scholar 

  20. Liu T, Darensbourg MY (2007) J Am Chem Soc 129:7008

    CAS  PubMed  Google Scholar 

  21. Donovan ES, Nichol GS, Felton GAN (2013) J Organomet Chem 726:9

    CAS  Google Scholar 

  22. Wang Y, Zhang T, Li B, Jiang S, Shang L (2015) RSC Adv 5:29022

    CAS  Google Scholar 

  23. Zhang X, Zhang T, Li Y, Li B, Jiang S, Zhang G, Hai L, Ma X, Wu W, Wang J (2018) Catal Today 316:223

    CAS  Google Scholar 

  24. Liu XF (2016) Polyhedron 117:672

    CAS  Google Scholar 

  25. Liu XF (2016) Polyhedron 119:71

    CAS  Google Scholar 

  26. APEX2, version 2009.7–0, Bruker AXS, Inc., Madison (2007)

  27. Sheldrick GM (2001) SADABS: program for absorption correction of area detector frames. Bruker AXS Inc., Madison

    Google Scholar 

  28. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Crystallogr 42:339

    CAS  Google Scholar 

  29. Sheldrick GM (2008) Acta Crystallogr A 64:112

    CAS  PubMed  Google Scholar 

  30. Zhao PH, Li XH, Liu YF, Liu YQ (2014) J Coord Chem 67:766

    CAS  Google Scholar 

  31. He J, Deng CL, Li Y, Li YL, Wu Y, Zou LK, Mu C, Luo Q, Xie B, Wei J, Hu JW, Zhao PH, Zheng W (2017) Organometallics 36:1322

    CAS  Google Scholar 

  32. Li YL, He J, Wei J, Wei J, Mu C, Wu Y, Xie B, Zou LK, Wang Z, Wu ML, Li HM, Gao F, Zhao PH (2017) Polyhedron 137:325

    CAS  Google Scholar 

  33. Lian M, He J, Yu XY, Mu C, Liu XF, Li YL, Jiang ZQ (2018) J Organomet Chem 870:90

    CAS  Google Scholar 

  34. Li YL, Ma ZY, He J, Hu MY, Zhao PH (2017) J Organomet Chem 851:14

    CAS  Google Scholar 

  35. Ghosh S, Hogarth G, Hollingsworth N, Holt KB, Richards I, Richmond MG, Sanchez BE, Unwin D (2013) Dalton Trans 42:6775

    CAS  PubMed  Google Scholar 

  36. Ezzaher S, Capon JF, Gloaguen F, Pétillon FY, Schollhammer P, Talarmin J (2009) Inorg Chem 48:2

    CAS  PubMed  Google Scholar 

  37. Chen FY, He J, Yu XY, Wang Z, Mu C, Liu XF, Li YL, Jiang ZQ, Wu HK (2018) Appl Organomet Chem 32:e4549

    Google Scholar 

  38. Lu DT, He J, Yu XY, Liu XF, Li YL, Jiang ZQ (2018) Polyhedron 149:1

    CAS  Google Scholar 

  39. Chen FY, He J, Mu C, Liu XF, Li YL, Jiang ZQ, Wu HK (2019) Polyhedron 160:74

    CAS  Google Scholar 

  40. Zhao PH, Ma ZY, Hu MY, He J, Wang YZ, Jing XB, Chen HY, Wang Z, Li YL (2018) Organometallics 37:1280

    CAS  Google Scholar 

  41. Zhao PH, Hu MY, Li JR, Ma ZY, Wang YZ, He J, Li YL, Liu XF (2019) Organometallics 38:385

    CAS  Google Scholar 

  42. Song LC, Ge JH, Liu XF, Zhao LQ, Hu QM (2006) J Organomet Chem 691:5701

    CAS  Google Scholar 

  43. Gloaguen F, Lawrence JD, Rauchfuss TB (2001) J Am Chem Soc 123:9476

    CAS  PubMed  Google Scholar 

  44. Mejia-Rodriguez R, Chong D, Reibenspies JH, Soriaga MP, Darensbourg MY (2004) J Am Chem Soc 126:12004

    CAS  PubMed  Google Scholar 

  45. Zaffaroni R, Rauchfuss TB, Gray DL, Gioia LD, Zampella G (2012) J Am Chem Soc 134:19260

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Song LC, Wang YX, Xing KK, Ding SD, Zhang LD, Wang XY, Zhang HY (2016) Chem Eur J 22:16304

    CAS  PubMed  Google Scholar 

  47. Fourmond V, Jacques PA, Fontecave M, Artero V (2010) Inorg Chem 49:10338

    CAS  PubMed  Google Scholar 

  48. Tatematsu R, Inomata T, Ozawa T, Masuda H (2016) Angew Chem Int Ed 55:5247

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant LY19B020002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Feng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

CCDC 1941119–1941121 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, HM., Wang, LH., Liu, XF. et al. Diiron butane-2,3-dithiolate complexes with monophosphine coligands: synthesis, characterization, and electrochemistry. Transit Met Chem 45, 47–53 (2020). https://doi.org/10.1007/s11243-019-00355-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-019-00355-x

Navigation