Skip to main content
Log in

A manganese Schiff base complex immobilized on copper–ferrite magnetic nanoparticles as an efficient and recyclable nanocatalyst for selective oxidation of alcohols

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A magnetically recoverable nanocatalyst was synthesized by covalent binding of a Schiff base ligand, namely N,N′-bis(Salicylidene)-1,3-diaminopropane-2-ol (H2salpn), onto the surface of silica-coated magnetic CuFe2O4 nanoparticles, followed by complexation with MnCl2. The resulting core–shell nanoparticles were characterized by spectroscopic and microscopic methods, including FTIR, XRD, VSM, TGA elemental analysis, TEM, and SEM. The Mn content was determined by ICP analysis. The nanoparticles were investigated as a catalyst for the selective oxidation of alcohols to the corresponding carbonyl compounds with tertiary-butyl hydrogen peroxide. The catalyst can be magnetically separated for reuse, with no noticeable loss of activity in subsequent reaction cycles. FTIR, VSM, and leaching experiments after three successive cycles confirmed that the catalyst was strongly anchored to the magnetic nanoparticles. A suitable mechanism for the reaction is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Shambayati S, Schreiber S, Trost B, Fleming I (1991) In: Trost BM (ed) Comprehensive organic synthesis. Pargamon Press, New York

    Google Scholar 

  2. Sheldon R (2012) Metal-catalyzed oxidations of organic compounds: mechanistic principles and synthetic methodology including biochemical processes. Elsevier, Amsterdam

    Google Scholar 

  3. Carey JS, Laffan D, Thomson C, Williams MT (2006) Analysis of the reactions used for the preparation of drug candidate molecules. Org Biomol Chem 4(12):2337–2347

    Article  CAS  PubMed  Google Scholar 

  4. Dugger RW, Ragan JA, Ripin DHB (2005) Survey of GMP bulk reactions run in a research facility between 1985 and 2002. Org Process Res Dev 9(3):253–258

    Article  CAS  Google Scholar 

  5. Arends IW, Sheldon RA (2011) Modern oxidation of alcohols using environmentally benign oxidants. ChemInform 42(44)

    Article  Google Scholar 

  6. Sheldon RA, Arends I, Dijksman A (2000) New developments in catalytic alcohol oxidations for fine chemicals synthesis. Catal Today 57(1):157–166

    Article  CAS  Google Scholar 

  7. Sheldon RA, Arends IW, ten Brink G-J, Dijksman A (2002) Green, catalytic oxidations of alcohols. Acc Chem Res 35(9):774–781

    Article  CAS  PubMed  Google Scholar 

  8. Amato ME, Ballistreri FP, Pappalardo A, Tomaselli GA, Toscano RM, Williams DJ (2005) Novel chiral (Salen) MnIII complexes containing a Calix [4] arene unit as catalysts for enantioselective epoxidation reactions of (Z)-aryl alkenes. Eur J Org Chem 16:3562–3570

    Article  Google Scholar 

  9. Moghadam M, Tangestaninejad S, Mirkhani V, Mohammadpoor-Baltork I, Mirjafari A, Mirbagheri NS (2010) Multi-wall carbon nanotubes supported molybdenum hexacarbonyl: an efficient and highly reusable catalyst for epoxidation of alkenes with tert-butyl hydroperoxide. J Mol Catal A Chem 329(1):44–49

    Article  CAS  Google Scholar 

  10. Ulmann PA, Braunschweig AB, Lee O-S, Wiester MJ, Schatz GC, Mirkin CA (2009) Inversion of product selectivity in an enzyme-inspired metallosupramolecular tweezer catalyzed epoxidation reaction. Chem Commun 34:5121–5123

    Article  Google Scholar 

  11. Wei S, Tang Y, Xu X, Xu G, Yu Y, Sun Y, Zheng Y (2011) A new heterogeneous chiral (salen) manganese(III) system for enantioselective epoxidation of non-functionalized olefins. Appl Organomet Chem 25(2):146–153

    Article  CAS  Google Scholar 

  12. Yang JY, Liu SY, Korendovych IV, Rybak-Akimova EV, Nocera DG (2008) Hangman salen platforms containing dibenzofuran scaffolds. Chemsuschem 1(11):941–949

    Article  CAS  PubMed  Google Scholar 

  13. Yu K, Lou L-L, Ding F, Wang S, Wang Z, Liu S (2006) Highly enantioselective epoxidation of olefins by Mn(III) salen complex immobilized on MCM-48. Catal Commun 7(3):170–172

    Article  CAS  Google Scholar 

  14. Kureshy RI, Ahmad I, Noor-ul HK, Abdi SH, Pathak K, Jasra RV (2005) Encapsulation of a chiral Mn III (salen) complex in ordered mesoporous silicas: an approach towards heterogenizing asymmetric epoxidation catalysts for non-functionalized alkenes. Tetrahedron Asymmetry 16(21):3562–3569

    Article  CAS  Google Scholar 

  15. Kureshy RI, Ahmad I, Noor-ul HK, Abdi SH, Pathak K, Jasra RV (2006) Chiral Mn(III) salen complexes covalently bonded on modified MCM-41 and SBA-15 as efficient catalysts for enantioselective epoxidation of nonfunctionalized alkenes. J Catal 238(1):134–141

    Article  CAS  Google Scholar 

  16. Ma L, Su F, Zhang X, Song D, Guo Y, Hu J (2014) Epoxidation of alkenes catalyzed by highly ordered mesoporous manganese–salen-based hybrid catalysts. Microporous Mesoporous Mater 184:37–46

    Article  CAS  Google Scholar 

  17. Zhang H, Wang YM, Zhang L, Gerritsen G, Abbenhuis HC, van Santen RA, Li C (2008) Enantioselective epoxidation of β-methylstyrene catalyzed by immobilized Mn (salen) catalysts in different mesoporous silica supports. J Catal 256(2):226–236

    Article  CAS  Google Scholar 

  18. Zhang H, Zhang Y, Li C (2006) Enantioselective epoxidation of unfunctionalized olefins catalyzed by the Mn (salen) catalysts immobilized in the nanopores of mesoporous materials. J Catal 238(2):369–381

    Article  CAS  Google Scholar 

  19. Gong B, Fu X, Chen J, Li Y, Zou X, Tu X, Ding P, Ma L (2009) Synthesis of a new type of immobilized chiral salen Mn(III) complex as effective catalysts for asymmetric epoxidation of unfunctionalized olefins. J Catal 262(1):9–17

    Article  CAS  Google Scholar 

  20. Tang X, Tang Y, Xu G, Wei S, Sun Y (2008) Highly enantioselective epoxidation of styrene and α-methylstyrene catalyzed by new doubly-immobilized chiral (salen) Mn(III) catalysts. Catal Commun 10(3):317–320

    Article  CAS  Google Scholar 

  21. Silva AR, Freire C, de Castro B (2004) Jacobsen catalyst anchored onto an activated carbon as an enantioselective heterogeneous catalyst for the epoxidation of alkenes. Carbon 42(14):3027–3030

    Article  CAS  Google Scholar 

  22. Tu X, Fu X, Hu X, Li Y (2010) Chiral salen Mn(III) immobilized on sulfoalkyl modified ZSP-IPPA as an effective catalyst for asymmetric epoxidation of unfunctionalized olefins. Inorg Chem Commun 13(3):404–407

    Article  CAS  Google Scholar 

  23. Silva AR, Budarin V, Clark JH, Freire C, De Castro B (2007) Organo-functionalized activated carbons as supports for the covalent attachment of a chiral manganese(III) salen complex. Carbon 45(10):1951–1964

    Article  CAS  Google Scholar 

  24. Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J (2010) Magnetic nanoparticles and targeted drug delivering. Pharmacol Res 62(2):144–149

    Article  CAS  PubMed  Google Scholar 

  25. Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Coll Interface Sci 166(1):8–23

    Article  CAS  Google Scholar 

  26. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63(1):24–46

    Article  CAS  PubMed  Google Scholar 

  27. Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60(11):1252–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304

    Article  CAS  PubMed  Google Scholar 

  29. Zhao X, Bao XY, Guo W, Lee FY (2006) Immobilizing catalysts on porous materials. Mater Today 9(3):32–39

    Article  CAS  Google Scholar 

  30. McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60(11):1241–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shokouhimehr M, Piao Y, Kim J, Jang Y, Hyeon T (2007) A magnetically recyclable nanocomposite catalyst for olefin epoxidation. Angew Chem Int Ed 46(37):7039–7043

    Article  CAS  Google Scholar 

  32. Saeednia S, Ardakani MH, Parizi ZP, Hafshejani MT (2016) Synthesis and characterization of a magnetically recoverable molybdenum(VI) nanocatalyst for eco-friendly oxidation of alcohols. Transit Met Chem 41(7):767–774

    Article  CAS  Google Scholar 

  33. Garza-Navarro M, González-González V, Torres-Castro A, Hinojosa M, García-Loera A, José-Yacamán M (2010) Elaboration of superparamagnetic cobalt–ferrite nanocomposites from films of chitosan chelates. J Appl Polym Sci 117(2):785–792

    Article  CAS  Google Scholar 

  34. Hu C, Gao Z, Yang X (2008) One-pot low temperature synthesis of MFe2O4 (M = Co, Ni, Zn) superparamagnetic nanocrystals. J Magn Magn Mater 320(8):L70–L73

    Article  CAS  Google Scholar 

  35. Gadkari AB, Shinde TJ, Vasambekar PN (2011) Ferrite gas sensors. IEEE Sens J 11(4):849–861

    Article  CAS  Google Scholar 

  36. Pershina A, Sazonov A, Ogorodova L (2010) Evaluation of the resistance of DNA immobilized on ferrimagnetic particles of cobalt ferrite nanopowder against nuclease cleavage. Bull Exp Biol Med 149(1):67–69

    Article  CAS  PubMed  Google Scholar 

  37. Esmaeilpour M, Sardarian AR, Javidi J (2012) Schiff base complex of metal ions supported on superparamagnetic Fe3O4@SiO2 nanoparticles: an efficient, selective and recyclable catalyst for synthesis of 1,1-diacetates from aldehydes under solvent-free conditions. Appl Catal A 445:359–367

    Article  Google Scholar 

  38. Kapilevich L, D’yakova EY, Nosarev A, Zaitseva T, Petlina Z, Ogorodova L, Ageev B, Magaeva A, Itin V, Terekhova AO (2010) Effect of nanodisperse ferrite cobalt (CoFe2O4) particles on contractile reactions in guinea pigs airways. Bull Exp Biol Med 149(1):70–72

    Article  CAS  PubMed  Google Scholar 

  39. Yi DK, Lee SS, Ying JY (2006) Synthesis and applications of magnetic nanocomposite catalysts. Chem Mater 18(10):2459–2461

    Article  CAS  Google Scholar 

  40. Yoon TJ, Yu KN, Kim E, Kim JS, Kim BG, Yun SH, Sohn BH, Cho MH, Lee JK, Park SB (2006) Specific targeting, cell sorting, and bioimaging with smart magnetic silica core–shell nanomaterials. Small 2(2):209–215

    Article  CAS  PubMed  Google Scholar 

  41. Ge Q, Huang Y, Qiu F, Li S (1998) Bifunctional catalysts for conversion of synthesis gas to dimethyl ether. Appl Catal A 167(1):23–30

    Article  CAS  Google Scholar 

  42. Bagherzadeh M, Mortazavi-Manesh A (2015) Immobilized manganese porphyrin on functionalized magnetic nanoparticles via axial ligation: efficient and recyclable nanocatalyst for oxidation reactions. J Coord Chem 68(13):2347–2360

    Article  CAS  Google Scholar 

  43. Esmaeilpour M, Javidi J, Dodeji FN, Abarghoui MM (2014) M (II) Schiff base complexes (M = zinc, manganese, cadmium, cobalt, copper, nickel, iron, and palladium) supported on superparamagnetic Fe3O4@SiO2 nanoparticles: synthesis, characterization and catalytic activity for Sonogashira-Hagihara coupling reactions. Transit Met Chem 39(7):797–809

    Article  CAS  Google Scholar 

  44. Sun W, Wang H, Xia C, Li J, Zhao P (2003) Chiral-Mn (Salen)-complex-catalyzed kinetic resolution of secondary alcohols in water. Angew Chem Int Ed 42(9):1042–1044

    Article  CAS  Google Scholar 

  45. Dandia A, Jain AK, Sharma S (2013) CuFe2O4 nanoparticles as a highly efficient and magnetically recoverable catalyst for the synthesis of medicinally privileged spiropyrimidine scaffolds. RSC Adv 3(9):2924–2934

    Article  CAS  Google Scholar 

  46. Sobhani S, Pakdin-Parizi Z (2014) Lanthanum(III) triflate supported on nanomagnetic γ-Fe2O3: a new magnetically recyclable heterogeneous Lewis acid for the one-pot synthesis of β-phosphonomalonates. RSC Adv 4(25):13071–13077

    Article  CAS  Google Scholar 

  47. Masteri-Farahani M, Tayyebi N (2011) A new magnetically recoverable nanocatalyst for epoxidation of olefins. J Mol Catal A Chem 348(1):83–87

    Article  CAS  Google Scholar 

  48. Coleman W, Taylor L (1971) Pentadentate ligands. I. Nickel(II) complexes of the linear Schiff base ligands derived from substituted salicylaldehydes and diethylenetriamine and 2,2′-bis (aminopropyl) amine. Inorg Chem 10(10):2195–2199

    Article  CAS  Google Scholar 

  49. Jia M, Thiel WR (2002) Oxodiperoxo molybdenum modified mesoporous MCM-41 materials for the catalytic epoxidation of cyclooctene. Chem Commun 20:2392–2393

    Article  Google Scholar 

  50. Mukhopadhyay R, Bhattacharjee S, Bhattacharyya R (1994) Ligand control on the synthesis and redox potency of mononuclear manganese-(III) and-(IV) complexes with tridentate ONS co-ordination. J Chem Soc Dalton Trans 19:2799–2804

    Article  Google Scholar 

  51. Panella B, Vargas A, Baiker A (2009) Magnetically separable Pt catalyst for asymmetric hydrogenation. J Catal 261(1):88–93

    Article  Google Scholar 

  52. Mahdavi V, Mardani M (2015) Mn (Salen) Cl complexes immobilized on SBA-15 functionalized with amine as an efficient, selective and recyclable catalyst for benzyl alcohol oxidation by TBHP: the effects of Mn loading and reaction conditions. Res Chem Intermed 41(11):8907–8927

    Article  CAS  Google Scholar 

  53. Oh NY, Suh Y, Park MJ, Seo MS, Kim J, Nam W (2005) Mechanistic insight into alcohol oxidation by high-valent iron–oxo complexes of heme and nonheme ligands. Angew Chem 117(27):4307–4311

    Article  Google Scholar 

  54. Rahimi R, Ghoreishi SZ, Dekamin MG (2012) Immobilized metalloporphyrins on 3-aminopropyl-functionalized silica support as heterogeneous catalysts for selective oxidation of primary and secondary alcohols. Monatshefte für Chemie-Chem Mon 143(7):1031–1038

    Article  CAS  Google Scholar 

  55. Mavis ME, Yolacan C, Aydogan F (2010) An investigation of the catalytic potential of mono-and dicationic imidazolium N-heterocyclic carbenes in the benzoin condensation. Tetrahedron Lett 51(34):4509–4511

    Article  CAS  Google Scholar 

  56. Zhou Q, Wan Z, Yuan X, Luo J (2016) A new magnetic nanoparticle-supported Schiff base complex of manganese: an efficient and recyclable catalyst for selective oxidation of alcohols. Appl Organomet Chem 30(4):215–220

    Article  CAS  Google Scholar 

  57. Nasseri MA, Mohammadinezhad A, Salimi M (2015) A cellulose-supported Mn (salen) Cl complex as an efficient heterogeneous catalyst for the selective oxidation of benzylic alcohols. J Iran Chem Soc 12(1):81–86

    Article  CAS  Google Scholar 

  58. Mahdavi V, Mardani M (2012) Selective oxidation of benzyl alcohol with tert-butylhydroperoxide catalysed via Mn(II) 2,2-bipyridine complexes immobilized over the mesoporous hexagonal molecular sieves (HMS). J Chem Sci 124(5):1107–1115

    Article  CAS  Google Scholar 

  59. Mahdavi V, Mardani M, Malekhosseini M (2008) Oxidation of alcohols with tert-butylhydroperoxide catalyzed by Mn(II) complexes immobilized in the pore channels of mesoporous hexagonal molecular sieves (HMS). Catal Commun 9(13):2201–2204

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of this work by Vali-e-Asr University of Rafsanjan is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Saeednia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakoli Hafshejani, M., Saeednia, S., Hatefi Ardakani, M. et al. A manganese Schiff base complex immobilized on copper–ferrite magnetic nanoparticles as an efficient and recyclable nanocatalyst for selective oxidation of alcohols. Transit Met Chem 43, 579–589 (2018). https://doi.org/10.1007/s11243-018-0244-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-018-0244-2

Navigation