Skip to main content
Log in

Syntheses, structures, and solid-state phosphorescence characteristics of trans-bis(salicylaldiminato)Pt(II) complexes bearing perpendicular N-aryl functionalities

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The syntheses, structures, and solid-state emission characteristics of trans-bis(salicylaldiminato)Pt(II) complexes bearing N-aromatic functionalities are described herein. A series of Pt complexes bearing various N-phenyl (1) and N-(1-naphthyl) (2) groups on the salicylaldiminato ligands were prepared by reacting PtCl2(CH3CN)2 with the corresponding N-salicylidene aromatic amines, and the trans-coordination and crystal packing of these complexes were unequivocally established based on X-ray diffraction (XRD). Complexes with 2,6-dimethylphenyl (1c), 2,6-diisopropylphenyl (1d), 1-naphthyl (2a), and 1-(2-methylnaphthyl) (2b) groups on the N atoms exhibited intense phosphorescent emission at ambient temperature in the crystalline state, while those with phenyl (1a), 2,6-dibromophenyl (1b), and 2,6-bis(N,N-dimethylamino)phenyl (1e) functionalities were either less emissive or non-emissive under the same conditions. XRD analyses identified significant intramolecular interactions between Pt and H atoms of the N-aryl functionalities in the emissive crystals of 1c, 1d, and 2a. These interactions were evidently an important factor associated with intense emission at ambient temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Evans RC, Douglas P, Winscom CJ (2006) Coord Chem Rev 250:2093–2126

    Article  CAS  Google Scholar 

  2. Yersin H (ed) (2008) Highly efficient OLEDs with phosphorescent materials. Wiley, Weinheim

    Google Scholar 

  3. Yersin H, Rausch AF, Czerwieniec R, Hofbeck T, Fischer T (2011) Coord Chem Rev 255:2622–2652

    Article  CAS  Google Scholar 

  4. Xiao L, Chen Z, Qu B, Luo J, Kong S, Gong Q, Kido J (2011) Adv Mater 23:926–952

    Article  CAS  Google Scholar 

  5. Buss CE, Mann KR (2002) J Am Chem Soc 124:1031–1039

    Article  CAS  Google Scholar 

  6. Kato M, Omura A, Toshikawa A, Kishi S, Sugimoto Y (2002) Angew Chem Int Ed 41:3183–3185

    Article  CAS  Google Scholar 

  7. Grove LJ, Rennekamp JM, Jude H, Connick WB (2004) J Am Chem Soc 126:1594–1595

    Article  CAS  Google Scholar 

  8. Wadas TJ, Wang QM, Kim YJ, Flaschenreim C, Blanton TN, Eisenberg R (2004) J Am Chem Soc 126:16841–16849

    Article  CAS  Google Scholar 

  9. Sun Y, Ye K, Zhang H, Zhang J, Zhao L, Li B, Yang G, Yang B, Wang Y, Lai SW, Che CM (2006) Angew Chem Int Ed 45:5610–5613

    Article  CAS  Google Scholar 

  10. Shigeta Y, Kobayashi A, Ohba T, Yoshida M, Matsumoto T, Chang HC, Kato M (2016) Chem Eur J 22:2682–2690

    Article  CAS  Google Scholar 

  11. Jiang B, Zhang J, Ma JQ, Zheng W, Chen LJ, Sun B, Li C, Hu BW, Tan H, Li X, Yang HB (2016) J Am Chem Soc 138:738–741

    Article  CAS  Google Scholar 

  12. Lin CJ, Liu YH, Peng SM, Shinmyozu T, Yang JS (2017) Inorg Chem 56:4978–4989

    Article  CAS  Google Scholar 

  13. Yang K, Li SL, Zhang FQ, Zhang XM (2016) Inorg Chem 55:7323–7325

    Article  CAS  Google Scholar 

  14. Park H, Kwon E, Chiang H, Im H, Lee KY, Kim J, Kim TH (2017) Inorg Chem 56:8287–8294

    Article  CAS  Google Scholar 

  15. Rawashdeh-Omary MA, Omary MA, Fackler JP Jr, Galassi R, Pietroni BR, Burini A (2001) J Am Chem Soc 123:9689–9691

    Article  CAS  Google Scholar 

  16. Lim SH, Olmstead MM, Balch AL (2011) J Am Chem Soc 133:10229–10238

    Article  CAS  Google Scholar 

  17. Malwitz MA, Lim SH, White-Morris RL, Pham DM, Olmstead MM, Balch AL (2012) J Am Chem Soc 134:10885–10893

    Article  CAS  Google Scholar 

  18. Balch AL (2009) Angew Chem Int Ed 48:2641–2644

    Article  CAS  Google Scholar 

  19. Liu L, Wang X, Wang N, Peng T, Wang S (2017) Angew Chem Int Ed 56:9160–9164

    Article  CAS  Google Scholar 

  20. Lee YA, Eisenberg R (2003) J Am Chem Soc 125:7778–7779

    Article  CAS  Google Scholar 

  21. Ito H, Saito T, Oshima N, Kitamura N, Ishizaka S, Hinatsu Y, Wakeshima M, Kato M, Tsuge K, Sawamura M (2008) J Am Chem Soc 130:10044–10045

    Article  CAS  Google Scholar 

  22. Seki T, Tokodai N, Omagari S, Nakanishi T, Hasegawa Y, Iwasa T, Taketsugu T, Ito H (2017) J Am Chem Soc 139:6514–6517

    Article  CAS  Google Scholar 

  23. Perruchas S, Le Goff XF, Maron S, Maurin I, Guillen F, Garcia A, Gacoin T, Boilot JP (2010) J Am Chem Soc 132:10967–10969

    Article  CAS  Google Scholar 

  24. Seki T, Takamatsu Y, Ito H (2016) J Am Chem Soc 138:6252–6260

    Article  CAS  Google Scholar 

  25. Yam VWW, Au VKM, Leung SYL (2015) Chem Rev 115:7589–7728

    Article  CAS  Google Scholar 

  26. Ostrowski JC, Robinson MR, Heeger AJ, Bazan GC (2002) Chem Commun 784–785

  27. Procopio EQ, Mauro M, Panigati M, Donghi D, Mercandelli P, Sironi A, D’Alfonso G, De Cola L (2010) J Am Chem Soc 132:14397–14399

    Article  Google Scholar 

  28. Strassert CA, Chien CH, Galvez Lopez MD, Kourkoulos D, Hertel D, Meerholz K, De Cola L (2011) Angew Chem Int Ed 50:946–950

    Article  CAS  Google Scholar 

  29. Raimondi A, Panigati M, Maggioni D, D’Alfonso L, Mercandelli P, Mussini P, D’Alfonso G (2012) Inorg Chem 51:2966–2975

    Article  CAS  Google Scholar 

  30. Krylova VA, Djurovich PI, Aronson JW, Haiges R, Whited MT, Thompson ME (2012) Organometallics 31:7983–7993

    Article  CAS  Google Scholar 

  31. Zink DM, Bächle M, Baumann T, Nieger M, Kühn M, Wang C, Klopper W, Monkowius U, Hofbeck T, Yersin H, Bräse S (2013) Inorg Chem 52:2292–2305

    Article  CAS  Google Scholar 

  32. Krikorian M, Liu S, Swager TM (2014) J Am Chem Soc 136:2952–2955

    Article  CAS  Google Scholar 

  33. Allampally NK, Daniliuc CG, Strassert CA, De Cola L (2015) Inorg Chem 54:1588–1596

    Article  CAS  Google Scholar 

  34. Kumar GR, Thilagar P (2016) Inorg Chem 55:12220–12229

    Article  Google Scholar 

  35. Imoto H, Tanaka S, Kato T, Watase S, Matsukawa K, Yumura T, Naka K (2016) Organometallics 35:364–369

    Article  CAS  Google Scholar 

  36. Imoto H, Sasaki H, Tanaka S, Yumura T, Naka K (2017) Organometallics 36:2605–2611

    Article  CAS  Google Scholar 

  37. Komiya N, Okada M, Fukumoto K, Jomori D, Naota T (2011) J Am Chem Soc 133:6493–6496

    Article  CAS  Google Scholar 

  38. Komiya N, Okada M, Fukumoto K, Kaneta K, Yoshida A, Naota T (2013) Chem Eur J 19:4798–4811

    Article  CAS  Google Scholar 

  39. Fukumoto K, Le NHT, Komiya N, Naota T (2014) Inorg Chem Commum 50:88–91

    Article  CAS  Google Scholar 

  40. Komiya N, Okada M, Fukumoto K, Iwata S, Naota T (2014) Dalton Trans 43:10074–10085

    Article  CAS  Google Scholar 

  41. Komiya N, Okada M, Hoshino M, Le NHT, Naota T (2014) Eur J Inorg Chem 6085–6096

  42. Komiya N, Okada M, Inoue R, Kawamorita S, Naota T (2015) Polyhedron 98:75–83

    Article  CAS  Google Scholar 

  43. Komiya N, Itami N, Naota T (2013) Chem Eur J 19:9497–9505

    Article  CAS  Google Scholar 

  44. Komiya N, Muraoka T, Iida M, Miyanaga M, Takahashi K, Naota T (2011) J Am Chem Soc 133:16054–16061

    Article  CAS  Google Scholar 

  45. Wagner PJ, Hammond GS (1968) In: Noyes WA Jr, Hammond GS, Pitts JN Jr (eds) Advances in photochemistry, vol 5. Interscience Publishers, New York, pp 21–156

    Google Scholar 

  46. Maeda T, Kawamorita S, Naota T (2016) Polyhedron 117:826–833

    Article  CAS  Google Scholar 

  47. Naota T, Koori H (2005) J Am Chem Soc 127:9324–9325

    Article  CAS  Google Scholar 

  48. Naito M, Souda H, Koori H, Komiya N, Naota T (2014) Chem Eur J 20:6991–7000

    Article  CAS  Google Scholar 

  49. Naito M, Inoue R, Iida M, Kuwajima Y, Kawamorita S, Komiya N, Naota T (2015) Chem Eur J 21:12927–12939

    Article  CAS  Google Scholar 

  50. Inoue R, Kawamorita S, Naota T (2016) Chem Eur J 22:5712–5726

    Article  CAS  Google Scholar 

  51. Naito M, Komiya N, Naota T (2016) Org Chem Front 3:1286–1294

    Article  CAS  Google Scholar 

  52. Komiya N, Kageyama T, Naito M, Naota T (2013) Acta Cryst C69:503–505

    Google Scholar 

  53. Naito M, Komiya N, Naota T (2015) J Mol Struct 1102:230–234

    Article  CAS  Google Scholar 

  54. Komiya N, Hori T, Naito M, Naota T (2014) Eur J Inorg Chem 156–163

  55. Komiya N, Yoshida A, Naota T (2013) Inorg Chem Commun 27:122–126

    Article  CAS  Google Scholar 

  56. Fanizzi FP, Intini FP, Maresca L, Natile G (1990) J Chem Soc, Dalton Trans 199–202

  57. Burnett MN, Johnson CK (1996) In: ORTEP-III: oak ridge thermal ellipsoid plotprogram for crystal structure illustrations, report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge

    Book  Google Scholar 

  58. Kawamura Y, Sasabe H, Adachi C (2004) Jpn J Appl Phys 43:7729–7730

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers (JP15H03796 and JP16H06516).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Naota.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwata, S., Takahashi, H., Ihara, A. et al. Syntheses, structures, and solid-state phosphorescence characteristics of trans-bis(salicylaldiminato)Pt(II) complexes bearing perpendicular N-aryl functionalities. Transit Met Chem 43, 115–125 (2018). https://doi.org/10.1007/s11243-017-0198-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-017-0198-9

Navigation