Skip to main content
Log in

Palladacycles incorporating a carboxylate-functionalized phosphine ligand: syntheses, characterization and their catalytic applications toward Suzuki couplings in water

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A series of acetato-bridged [C^X]-type (C = aryl carbanion, X = N, P) palladacycles (15) of the general formula [Pd(μ-CH3COO)(C^X)]2 were synthesized as metal precursors via slightly modified procedures. However, in the case of complex 5 with Dpbp (Dpbp = 2′-(diphenylphosphino-κP)[1,1′-biphenyl]-2-yl-κC) as the supporting C^P ligand, an unexpected dinuclear complex [Pd(μ-CO2)(Dpbp)]2 (6) was obtained as a by-product and structurally determined by X-ray crystallography. The reactions of complexes 14 with 2-(diphenylphosphino)benzoic acid conveniently afforded four carboxylate-functionalized phosphine complexes [Pd(C^N)(Dpb)] (Dbp = 2-(diphenylphosphino-κP)benzoato-κO, 710), two of which (9/10) are newly synthesized in the present work and have been fully characterized. A comparative catalytic study revealed that complex [Pd(Ppy)(Dpb)] (7) (Ppy = 2-(2-pyridinyl-κN)phenyl-κC) is the best performer in Suzuki cross-couplings in H2O. In addition, complex 7 exhibits much better catalytic activity compared to the non-functionalized phosphine equivalent [Pd(OAc)(PPh3)(Ppy)] (11), which clearly indicates the superiority of incorporating a carboxylate-functionalized phosphine ligand into the palladacycles. A preliminary mechanistic study uncovered a different precatalyst initiation pathway compared to other known analogues of catalyst precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Scheme 5
Fig. 2
Fig. 3
Scheme 6
Scheme 7

Similar content being viewed by others

Notes

  1. For a book on palladacycles, see: [1].

  2. For a representative review, see: [2].

  3. For a representative review including the applications of palladacycles in material chemistry, see: [3].

  4. For representative reviews, see: [4,5,6,7,8,9,10,11,12,13,14].

  5. For very recent examples of complexes of the type I, see: [16,17,18,19,20,21].

  6. For representative reviews, see: [28,29,30].

  7. For reviews on Suzuki couplings in H2O, see: [36]. For some very recent examples, see: [37,38,39,40,41,42].

  8. The term transphobia effect was first coined by Vicente and Jones’s groups. For this paper, see: [56].

  9. For selected reviews on Suzuki couplings catalyzed by palladium complexes, see: [30, 60,61,62,63,64]. For selected examples on Suzuki couplings using palladium N-heterocyclic carbene complexes: see: [65].

References

  1. Dupont J, Pfeffer M (2008) Palladacycles: synthesis, characterization and applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Kapdi AR, Fairlamb IJS (2014) Chem Soc Rev 43:4751–4777

    Article  CAS  Google Scholar 

  3. Dupont J, Consorti CS, Spencer J (2005) Chem Rev 105:2527–2571

    Article  CAS  Google Scholar 

  4. Lyons TW, Sanford MS (2010) Chem Rev 110:1147–1169

    Article  CAS  Google Scholar 

  5. Dunina VV, Gorunova ON (2004) Russ Chem Rev 73:309–350

    Article  CAS  Google Scholar 

  6. Beletskaya IP, Cheprakov AV (2004) J Organomet Chem 689:4055–4082

    Article  CAS  Google Scholar 

  7. Omae I (2004) Coord Chem Rev 248:995–1023

    Article  CAS  Google Scholar 

  8. Bedford RB, Cazin CSJ, Holder D (2004) Coord Chem Rev 248:2283–2321

    Article  CAS  Google Scholar 

  9. Bellina F, Carpita A, Rossi R (2004) Synthesis 15:2419–2440

    Google Scholar 

  10. Singleton JT (2003) Tetrahedron 59:1837–1857

    Article  CAS  Google Scholar 

  11. Bedford RB (2003) Chem. Commun. 15:1787–1796

    Article  Google Scholar 

  12. van der Boom ME, Milstein D (2003) Chem Rev 103:1759–1792

    Article  Google Scholar 

  13. Albrecht M, van Koten G (2001) Angew Chem Int Ed 40:3750–3781

    Article  CAS  Google Scholar 

  14. Dupont J, Pfeffer M, Spencer J (2001) Eur J Inorg Chem 8:1917–1927

    Article  Google Scholar 

  15. Hartwig JF (2010) Organotransition metal chemistry, from bonding to catalysis. University Science Books, New York

    Google Scholar 

  16. Sharma AK, Joshi H, Bhaskar R, Kumar S, Singh AK (2017) Dalton Trans 46:2485–2496

    Article  CAS  Google Scholar 

  17. Hu H, Qu F, Gerlach DL, Shaughnessy KH (2017) ACS Catal 7:2516–2527

    Article  CAS  Google Scholar 

  18. Fath RH, Hoseini SJ (2017) J Organomet Chem 828:16–23

    Article  Google Scholar 

  19. Iwasaki M, Nashihara Y (2016) Dalton Trans 45:15278–15284

    Article  CAS  Google Scholar 

  20. Xiao ZQ, Xu C, Li HM, Han X, Wang ZQ, Fu WJ, Hao XQ, Song MP (2015) Transition Met Chem 40:501–508

    Article  CAS  Google Scholar 

  21. Han X, Li HM, Xu C, Xiao ZQ, Wang ZQ, Fu WJ, Hao XQ, Song MP (2016) Transition Met Chem 41:403–411

    Article  CAS  Google Scholar 

  22. Sánchez G, García J, Meseguer D, Serrano JL, García L, Pérez J, López G (2003) Dalton Trans 24:4709–4717

    Article  Google Scholar 

  23. Sánchez G, García J, Meseguer D, Serrano JL, García L, Pérez J, López G (2004) Inorg Chim Acta 357:4568–4576

    Article  Google Scholar 

  24. Sánchez G, Serrano JL, Moral MA, Pérez J, Molins E, López G (1999) Polyhedron 18:3057–3064

    Article  Google Scholar 

  25. Sánchez G, García J, Liu M, García L, Pérez J, Pérez E, Serrano JL (2013) J Coord Chem 16:2919–2929

    Article  Google Scholar 

  26. Rmírez-López P, Ros A, Romero-Arenas A, Iglesias-Sigüenza J, Fernández R, Lassaletta JM (2016) J Am Chem Soc 138:12053–12056

    Article  Google Scholar 

  27. Aleock NW, Brown JM, Pearson M, Woodward S (1992) Tetrahedron Asymmetry 3:17–20

    Article  Google Scholar 

  28. Seechurn CCCJ, Kitching MO, Colacot TJ, Snieckus V (2012) Angew Chem Int Ed 51:5062–5085

    Article  Google Scholar 

  29. Nicolaou KC, Bulger PG, Sarlah D (2005) Angew Chem Int Ed 44:4442–4489

    Article  CAS  Google Scholar 

  30. Fortman GC, Nolan SP (2011) Chem Soc Rev 40:5151–5169

    Article  CAS  Google Scholar 

  31. Bedford RB, Cazin CJ (2001) Chem Commun 17:1540–1541

    Article  Google Scholar 

  32. Bedford RB, Hazelwood SL, Horton PN, Hursthouse MB (2003) Dalton Trans 21:4164–4174

    Article  Google Scholar 

  33. Bedford RB, Cazin CSJ, Hursthouse MB, Light ME, Scordia VJM (2004) Dalton Trans 22:3864–3868

    Article  Google Scholar 

  34. Bedford RB, Cazin CSJ (2003) Organometallics 22:987–999

    Article  CAS  Google Scholar 

  35. Bedford RB, Cazin CSJ, Hursthouse MB, Light ME, Pike KJ, Wimperis S (2001) J Organomet Chem 633:173–181

    Article  CAS  Google Scholar 

  36. Chatterjee A, Ward TR (2016) Catal Lett 146:820–840

    Article  CAS  Google Scholar 

  37. Mattiello S, Rooney M, Sanzone A, Brazzo P, Sassi M, Beverina L (2017) Org Lett 19:654–657

    Article  CAS  Google Scholar 

  38. Zong Y, Wang J, He Y, Yue G, Wang X (2016) RSC Adv 6:89621–89626

    Article  CAS  Google Scholar 

  39. Ghorbani-Choghamarani A, Tahmasbi B, Moradi P (2016) RSC Adv. 6:43205–43216

    Article  CAS  Google Scholar 

  40. Ma X, Lv G, Cheng X, Li W, Sang R, Zhang Y, Wang Q, Hai L, Wu Y (2017) Appl Organometal Chem. doi:10.1002/aoc.3854

    Google Scholar 

  41. Guo Y, Li J, Shi X, Liu Y, Xie K, Liu Y, Jiang Y, Yang B, Yang R (2017) Appl Organometal Chem. doi:10.1002/aoc.3592

    Google Scholar 

  42. Paul S, Islamc MM, Islam SM (2015) RSC Adv 5:42193–42221

    Article  CAS  Google Scholar 

  43. Jia X, Yang D, Zhang S, Cheng J (2009) Org Lett 11:4716–4719

    Article  CAS  Google Scholar 

  44. Lyons TW, Hull KL, Sanford MS (2011) J Am Chem Soc 133:4455–4464

    Article  CAS  Google Scholar 

  45. Hiraki K, Fuchita Y (1981) Inorg Synth 26:208–211

    Article  Google Scholar 

  46. Hiraki K, Fuchita Y, Takechi K (1981) Inorg Chem 20:4316–4320

    Article  CAS  Google Scholar 

  47. Albert J, Granell J, Zafrilla J, Font-Bardia M, Solans X (2005) J Organomet Chem 690:422–429

    Article  CAS  Google Scholar 

  48. Baba K, Tobisu M, Chatani N (2013) Angew Chem Int Ed 52:11892–11895

    Article  CAS  Google Scholar 

  49. Powers DC, Ritter T (2009) Nat Chem 1:302–310

    Article  CAS  Google Scholar 

  50. Powers DC, Geibel MAL, Klein JEMN, Ritter T (2009) J Am Chem Soc 131:17050–17051

    Article  CAS  Google Scholar 

  51. Berry JF, Bill E, Bothe E, Cotton A, Dalal NS, Ibragimov SA, Kaur N, Liu CY, Murillo CA, Nellutla S, North M, Villagrán D (2007) J Am Chem Soc 129:1393–1401

    Article  CAS  Google Scholar 

  52. Cotton FA, Koshevoy LO, Lahuerta P, Murillo CA, Sanaú M, Ubeda MA, Zhao Q (2006) J Am Chem Soc 2006(128):13674–13675

    Article  Google Scholar 

  53. Kullberg ML, Lemke FR, Powell DR, Kubiak CP (1985) Inorg Chem 24:3589–3594

    Article  CAS  Google Scholar 

  54. Holloway RG, Penfold BR (1976) J Chem Soc Chem Commun 203:485–486

    Article  Google Scholar 

  55. Lide DR (2005) CRC handbook of chemistry and physics (Internet Version). http://www.hbcpnetbase.com, CRC Press, Boca Raton

  56. Vicente J, Arcas A, Bautista D, Jones PG (1997) Organometallics 16:2127–2138

    Article  CAS  Google Scholar 

  57. Veljkovi DŽ, Janjić GV, Zarić SD (2011) Cryst Eng Commun 13(2011):5005–5010

    Article  Google Scholar 

  58. Steiner T (2003) Crystallogr Rev 9:177–228

    Article  CAS  Google Scholar 

  59. Steiner T, Desiraju GR (1998) Chem Commun 8:891–892

    Article  Google Scholar 

  60. Maluenda I, Navarro O (2015) Molecules 20:7528–7557

    Article  CAS  Google Scholar 

  61. Suzuki A (1999) J Organomet Chem 576:147–168

    Article  CAS  Google Scholar 

  62. Huynh HV, Chew YX (2010) Inorg Chim Acta 363:1979–1983

    Article  CAS  Google Scholar 

  63. Huynh HV, Wu J (2009) J Organomet Chem 694:323–331

    Article  CAS  Google Scholar 

  64. Chen C, Qiu HY, Chen WZ (2012) J Organomet Chem 696:4166–4172

    Article  CAS  Google Scholar 

  65. Zhang XM, Xie WL, Chen WZ (2010) Tetrahedron 66:1188–1195

    Article  CAS  Google Scholar 

  66. Schaaf PAVD, Kolly R, Tinkl M (2004) U.S. patent 20040167018

  67. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339–341

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Beijing Natural Science Foundation (Grant No. 2164057) and National Natural Science Foundation of China (Grant No. 21502122) for financial support. In particular, we thank Dr. Wei Wei and Dr. Deng Xuebin for refining the X-ray molecular structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, H., Yuan, J. et al. Palladacycles incorporating a carboxylate-functionalized phosphine ligand: syntheses, characterization and their catalytic applications toward Suzuki couplings in water. Transit Met Chem 42, 727–738 (2017). https://doi.org/10.1007/s11243-017-0181-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-017-0181-5

Navigation